User:Stan.Mikita/sandbox

From Wikipedia, the free encyclopedia

Vesicle fusion is the process of a vesicle approaching a membrane (or another vesicle) and then fusing with it. The SNARE complex, a four-protein complex, is involved in bringing the vesicle in contact with the membrane. Two proteins are bound to the vesicle, and two proteins are bound to the plasma membrane. One of the two plasma membrane proteins involved in the formation of the exocytotic fusion complex in neurons is SNAP-25[1], a Q-SNARE protein contributing two α-helices. SNAP-25 is a membrane-bound protein anchored to the cytosolic face of membranes via palmitoyl side chains in the middle of the molecule. This means that SNAP-25 does not contain a trans-membrane domain[2]. SNAP-25 assembles with the other three SNARE complex proteins syntaxin-1, synaptotagmin, and synaptobrevin. The selective binding of these proteins enables vesicle docking and fusion to occur at the correct place[3].

To form the SNARE complex, the two proteins on the vesicle membrane and the two proteins on the plasma membrane bind to each other and begin to wrap around each other and form a coiled coil. Both synaptobrevin and syntaxin bind to SNAP-25 [4]. The two proteins bind to different regions on the SNAP-25 protein. Syntaxin binds near SNAP-25's N-terminus side[5].

SNAP-25 inhibits P/Q- and L-type voltage-gated calcium channels located presynaptically[6] and interacts with the synaptotagmin C2B domain in Ca2+-independent fashion.[7] In glutamatergic synapses SNAP-25 decreases the Ca2+ responsiveness, while it is naturally absent in GABAergic synapses.[8]

There are two known forms of the SNAP-25 protein: SNAP-25A and SNAP-25B. The differences between these two forms are outlined in the table below.

SNAP25A SNAP25B
Structure
Function
cDNA
  1. ^ Pevsner, Jonathan; Hsu, Shu-Chan; Braun, Janice E. A.; Calakos, Nicole; Ting, Anthony E.; Bennett, Mark K.; Scheller, Richard H. (August 1994). "Specificity and regulation of a synaptic vesicle docking complex". Neuron. 13 (2): 353-361. doi:10.1016/0896-6273994090352-2. {{cite journal}}: |access-date= requires |url= (help)
  2. ^ Chapman, E. R; An, S.; Barton, N.; Jahn, R. (1994). "SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils". The Journal of biological chemistry. 269 (44): 27427. {{cite journal}}: |access-date= requires |url= (help)
  3. ^ Calakos, N.; Bennett, M.; Peterson, K.C.; Scheller, R.H (1994). "Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking". Science. 263: 1146-1149. {{cite journal}}: |access-date= requires |url= (help)
  4. ^ Chapman, E. R; An, S.; Barton, N.; Jahn, R. (1994). "SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils". The Journal of biological chemistry. 269 (44): 27427. {{cite journal}}: |access-date= requires |url= (help)
  5. ^ Chapman, E. R; An, S.; Barton, N.; Jahn, R. (1994). "SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils". The Journal of biological chemistry. 269 (44): 27427. {{cite journal}}: |access-date= requires |url= (help)
  6. ^ Hodel A (October 1998). "SNAP-25". Int. J. Biochem. Cell Biol. 30 (10): 1069–73. doi:10.1016/S1357-2725(98)00079-X. PMID 9785471.
  7. ^ Chapman ER (July 2002). "Synaptotagmin: a Ca(2+) sensor that triggers exocytosis?" (PDF). Nat. Rev. Mol. Cell Biol. 3 (7): 498–508. doi:10.1038/nrm855. PMID 12094216. [dead link]
  8. ^ Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (February 2004). "SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization". Neuron. 41 (4): 599–610. doi:10.1016/S0896-6273(04)00077-7. PMID 14980208.{{cite journal}}: CS1 maint: multiple names: authors list (link)