Jump to content

Lactobacillus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
not really sure where to put this, but the only reasonable alternative IMO was the probiotics section. this one seemed more appropriate.
Rescuing 2 sources and tagging 0 as dead. #IABot (v1.6.1) (Balon Greyjoy)
Line 154: Line 154:


==Taxonomy==
==Taxonomy==
The genus ''Lactobacillus'' currently contains over 180 species and encompasses a wide variety of organisms.<ref>http://www.bacterio.cict.fr/l/lactobacillus.html</ref> The genus is [[polyphyletic]], with the genus ''[[Pediococcus]]'' dividing the ''L. casei'' group, and the species ''[[L. acidophilus]]'', ''[[L. salivarius]]'', and ''[[L. reuteri]]'' being representatives of three distinct subclades. The genus ''[[Paralactobacillus]]'' falls within the ''[[L. salivarius]]'' group. In recent years, other members of the genus ''Lactobacillus'' (formerly known as the ''Leuconostoc'' branch of ''Lactobacillus'') have been reclassified into the genera ''[[Atopobium]]'', ''[[Carnobacterium]]'', ''[[Weissella]]'', ''[[Oenococcus]]'', and ''[[Leuconostoc]]''. More recently, the ''Pediococcus'' species ''[[P. dextrinicus]]'' has been reclassified as a ''Lactobacillus'' species.<ref>(IJSEM, Paper in Press).</ref> According to metabolism, ''Lactobacillus'' species can be divided into three groups:
The genus ''Lactobacillus'' currently contains over 180 species and encompasses a wide variety of organisms.<ref>{{cite web |url=http://www.bacterio.cict.fr/l/lactobacillus.html |title=Archived copy |accessdate=2007-02-02 |deadurl=yes |archiveurl=https://web.archive.org/web/20070202132806/http://www.bacterio.cict.fr/l/lactobacillus.html |archivedate=2007-02-02 |df= }}</ref> The genus is [[polyphyletic]], with the genus ''[[Pediococcus]]'' dividing the ''L. casei'' group, and the species ''[[L. acidophilus]]'', ''[[L. salivarius]]'', and ''[[L. reuteri]]'' being representatives of three distinct subclades. The genus ''[[Paralactobacillus]]'' falls within the ''[[L. salivarius]]'' group. In recent years, other members of the genus ''Lactobacillus'' (formerly known as the ''Leuconostoc'' branch of ''Lactobacillus'') have been reclassified into the genera ''[[Atopobium]]'', ''[[Carnobacterium]]'', ''[[Weissella]]'', ''[[Oenococcus]]'', and ''[[Leuconostoc]]''. More recently, the ''Pediococcus'' species ''[[P. dextrinicus]]'' has been reclassified as a ''Lactobacillus'' species.<ref>(IJSEM, Paper in Press).</ref> According to metabolism, ''Lactobacillus'' species can be divided into three groups:
* Obligately homofermentative (group I) including:
* Obligately homofermentative (group I) including:
** ''[[Lactobacillus acidophilus|L. acidophilus]]'', ''[[Lactobacillus delbrueckii|L. delbrueckii]]'', ''[[Lactobacillus helveticus|L. helveticus]]'', ''[[Lactobacillus salivarius|L. salivarius]]''
** ''[[Lactobacillus acidophilus|L. acidophilus]]'', ''[[Lactobacillus delbrueckii|L. delbrueckii]]'', ''[[Lactobacillus helveticus|L. helveticus]]'', ''[[Lactobacillus salivarius|L. salivarius]]''
Line 226: Line 226:
== External links ==
== External links ==
*{{wikispecies-inline|Lactobacillus}}
*{{wikispecies-inline|Lactobacillus}}
*[http://www.bacterio.cict.fr/l/lactobacillus.html List of species of the genus Lactobacillus]
*[https://web.archive.org/web/20070202132806/http://www.bacterio.cict.fr/l/lactobacillus.html List of species of the genus Lactobacillus]
*[http://www.milkthefunk.com/wiki/Lactobacillus Lactobacillus at Milk the Funk Wiki]
*[http://www.milkthefunk.com/wiki/Lactobacillus Lactobacillus at Milk the Funk Wiki]
*[http://bacdive.dsmz.de/index.php?search=Lactobacillus&submit=Search ''Lactobacillus'' at Bac''Dive'' - the Bacterial Diversity Metadatabase]
*[http://bacdive.dsmz.de/index.php?search=Lactobacillus&submit=Search ''Lactobacillus'' at Bac''Dive'' - the Bacterial Diversity Metadatabase]

Revision as of 09:37, 7 December 2017

Lactobacillus
Lactobacillus near a squamous epithelial cell
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Lactobacillus

Beijerinck 1901
Species

Lactobacillus is a genus of Gram-positive, facultative anaerobic or microaerophilic, rod-shaped, non-spore-forming bacteria.[1] They are a major part of the lactic acid bacteria group (i.e. they convert sugars to lactic acid). In humans, they constitute a significant component of the microbiota at a number of body sites, such as the digestive system, urinary system, and genital system. In women of European ancestry, Lactobacillus species are normally a major part of the vaginal microbiota.[2][3][4] Lactobacillus forms biofilms in the vaginal and gut microbiota, allowing them to persist during harsh environmental conditions and maintain ample populations.[5] Lactobacillus exhibits a commensal relationship with the human body as it protects the host against potential invasions by pathogens, and in turn, the host provides a source of nutrients.[6] Lactobacillus is the most common probiotic found in food such as yogurt, and it is diverse in its application to maintain human well-being as it can help treat diarrhea, vaginal infections and skin disorders such as eczema.[5]

Metabolism

Many lactobacilli operate using homofermentative metabolism (they produce only lactic acid from sugars), and some species use heterofermentative metabolism (they can produce either alcohol or lactic acid from sugars).[7] They are aerotolerant despite the complete absence of a respiratory chain.[8][9] This aerotolerance is manganese-dependent and has been explored (and explained) in Lactobacillus plantarum.[10] Many species of this genus do not require iron for growth and have an extremely high hydrogen peroxide tolerance.[citation needed]

Tryptophan metabolism by human gastrointestinal microbiota ()
The image above contains clickable links
This diagram shows the biosynthesis of bioactive compounds (indole and certain other derivatives) from tryptophan by bacteria in the gut.[11] Indole is produced from tryptophan by bacteria that express tryptophanase.[11] Clostridium sporogenes metabolizes tryptophan into indole and subsequently 3-indolepropionic acid (IPA),[12] a highly potent neuroprotective antioxidant that scavenges hydroxyl radicals.[11][13][14] IPA binds to the pregnane X receptor (PXR) in intestinal cells, thereby facilitating mucosal homeostasis and barrier function.[11] Following absorption from the intestine and distribution to the brain, IPA confers a neuroprotective effect against cerebral ischemia and Alzheimer's disease.[11] Lactobacillaceae (Lactobacillus s.l.) species metabolize tryptophan into indole-3-aldehyde (I3A) which acts on the aryl hydrocarbon receptor (AhR) in intestinal immune cells, in turn increasing interleukin-22 (IL-22) production.[11] Indole itself triggers the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells and acts as a ligand for AhR.[11] Indole can also be metabolized by the liver into indoxyl sulfate, a compound that is toxic in high concentrations and associated with vascular disease and renal dysfunction.[11] AST-120 (activated charcoal), an intestinal sorbent that is taken by mouth, adsorbs indole, in turn decreasing the concentration of indoxyl sulfate in blood plasma.[11]

Genome

The genomes of Lactobacillus are highly variable, ranging in size from 1.2 to 3.3 Mb (megabases). Accordingly, the number of protein-coding genes ranges from 1,100 to about 3,200 genes.[15]

Lactobacillus contains a wealth of compound microsatellites in the coding region of the genome, which are imperfect and have variant motifs.[16]

Taxonomy

The genus Lactobacillus currently contains over 180 species and encompasses a wide variety of organisms.[17] The genus is polyphyletic, with the genus Pediococcus dividing the L. casei group, and the species L. acidophilus, L. salivarius, and L. reuteri being representatives of three distinct subclades. The genus Paralactobacillus falls within the L. salivarius group. In recent years, other members of the genus Lactobacillus (formerly known as the Leuconostoc branch of Lactobacillus) have been reclassified into the genera Atopobium, Carnobacterium, Weissella, Oenococcus, and Leuconostoc. More recently, the Pediococcus species P. dextrinicus has been reclassified as a Lactobacillus species.[18] According to metabolism, Lactobacillus species can be divided into three groups:

Human health

Vaginal tract

The female genital tract is one of the principal colonisation sites for human microbiota, and there is interest in the relationship between the composition of these bacteria and human health, with a domination by a single species being correlated with general welfare and good outcomes in pregnancy. In around 70% of women, a Lactobacillus species is dominant, although that has been found to vary between American women of European origin and those of African origin, the latter group tending to have more diverse vaginal microbiota. Similar differences have also been identified in comparisons between Belgian and Tanzanian women.[2][3][4]

Interactions with other pathogens

Lactobacillus species produce hydrogen peroxide which inhibits the growth and virulence of the fungal pathogen Candida albicans in vitro and in vivo.[19][20] In vitro studies have also shown that Lactobacillus sp. reduce the pathogenicity of C. albicans through the production of organic acids and certain metabolites.[21] Both the presence of metabolites, such as sodium butyrate, and the decrease in environmental pH caused by the organic acids reduce the growth of hypha in C. albicans, which reduces its pathogenicity. [21] Lactobacillus sp. also reduce the pathogenicity of C. albicans by reducing C. albicans biofilm formation.[21] Biofilm formation is reduced by both the competition from Lactobacillus sp., and the formation of defective biofilms which is linked to the reduced hypha growth mentioned earlier. [21] On the other hand, following antibiotic therapy, certain Candida species can suppress the regrowth of Lactobacillus sp. at body sites where they cohabitate, such as in the gastrointestinal tract.[19][20]

In addition to its effects on C. albicans, Lactobacillus sp. also interact with other pathogens. For example, Lactobacillus reuteri can inhibit the growth of many different bacterial species by using glycerol to produce the antimicrobial substance called reuterin. [22] Another example is Lactobacillus salivarius, which interacts with many pathogens through the production of salivaricin B, a bacteriocin.[23]

Probiotics

Lactobacillus species administered in combination with other probiotics benefits cases of irritable bowel syndrome (IBS), although the extent of efficacy is still uncertain.[24] The probiotics help treat IBS by returning homeostasis when the gut microbiota experiences unusually high levels of opportunistic bacteria.[6] In addition, Lactobacillus species can be administered as probiotics during cases of infection by the ulcer-causing bacterium Helicobacter pylori.[25] Helicobacter pylori is linked to cancer, and antibiotic resistance impedes the success of current antibiotic-based eradication treatments.[25] When Lactobacillus probiotics are administered along with the treatment as an adjuvant, its efficacy is substantially increased and side effects may be lessened.[25] Also, Lactobacillus is used to help control urogenital and vaginal infections, such as bacterial vaginosis (BV). Lactobacillus produce bacteriocins to suppress pathogenic growth of certain bacteria,[26] as well as lactic acid and H2O2 (hydrogen peroxide). Lactic acid lowers the vaginal pH to around 4.5 or less, hampering the survival of other bacteria, and H2O2 reestablishes the normal bacterial flora and normal vaginal pH. [26] In children, Lactobacillus strains such as L. rhamnosus are associated with a reduction of atopic eczema, also known as dermatitis, due to anti-inflammatory cytokines secreted by this probiotic bacteria.[6] As well, in 2017, Lactobacillus have been shown to counteract the long term side effect of exposure to antibiotics in early life in mice.[27]

Oral health

Dental caries

Some Lactobacillus species have been associated with cases of dental caries (cavities). Lactic acid can corrode teeth, and the Lactobacillus count in saliva has been used as a "caries test" for many years. Lactobacilli characteristically cause existing carious lesions to progress, especially those in coronal caries. The issue is, however, complex, as recent studies show probiotics can allow beneficial lactobacilli to populate sites on teeth, preventing streptococcal pathogens from taking hold and inducing dental decay. The scientific research of lactobacilli in relation to oral health is a new field and only a few studies and results have been published.[28][29] Some studies have provided evidence of certain Lactobacilli which can be a probiotic for oral health.[30] Some species, but not all, show evidence in defense to dental caries.[30] Due to these studies, there have been applications of incorporating such probiotics in chewing gum and lozenges.[30] There is also evidence of certain Lactobacilli that are beneficial in the defense of periodontal disease such as gingivitis and periodontitis.[30]

Food production

Some Lactobacillus species are used as starter cultures in industry for controlled fermentation in the production of yogurt, cheese, sauerkraut, pickles, beer, cider, kimchi, cocoa, kefir, and other fermented foods, as well as animal feeds. The antibacterial and antifungal activity of Lactobacillus species rely on production of bacteriocins and low molecular weight compounds that inhibits these microorganisms.[31]

Sourdough bread is made either spontaneously, by taking advantage of the bacteria naturally present in flour, or by using a "starter culture", which is a symbiotic culture of yeast and lactic acid bacteria growing in a water and flour medium. The bacteria metabolize sugars into lactic acid, which lowers the pH of their environment, creating a signature "sourness" associated with yogurt, sauerkraut, etc.

In many traditional pickling processes, vegetables are submerged in brine, and salt-tolerant Lactobacillus species feed on natural sugars found in the vegetables. The resulting mix of salt and lactic acid is a hostile environment for other microbes, such as fungi, and the vegetables are thus preserved—remaining edible for long periods.

Lactobacilli, especially L. casei and L. brevis, are some of the most common beer spoilage organisms. They are, however, essential to the production of sour beers such as Belgian lambics and American wild ales, giving the beer a distinct tart flavor.

See also

References

  1. ^ Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V. (October 2006). "Comparative genomics of the lactic acid bacteria". Proc Natl Acad Sci U S A. 103 (42): 15611–6. doi:10.1073/pnas.0607117103. PMC 1622870. PMID 17030793. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  2. ^ a b Petrova, Mariya I.; Lievens, Elke; Malik, Shweta; Imholz, Nicole; Lebeer, Sarah (2015). "Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health". Frontiers in Physiology. 6. doi:10.3389/fphys.2015.00081. ISSN 1664-042X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ a b Ma, Bing; Forney, Larry J.; Ravel, Jacques (20 September 2012). "Vaginal Microbiome: Rethinking Health and Disease". Annual Review of Microbiology. 66 (1): 371–389. doi:10.1146/annurev-micro-092611-150157. ISSN 0066-4227. PMC 3780402. PMID 22746335.
  4. ^ a b Fettweis, JM; Brooks, JP; Serrano, MG; Sheth, NU; Girerd, PH; Edwards, DJ; Strauss, JF; Jefferson, KK; Buck, GA (2014). "Differences in vaginal microbiome in African American women versus women of European ancestry". Microbiology. 160 (Pt 10): 2272–82. doi:10.1099/mic.0.081034-0. PMC 4178329. PMID 25073854.
  5. ^ a b Salas-Jara, Maria Jose; Alejandra Ilabaca; Marco Vega; Apolinaria García (September 20, 2016). "Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics". NCBI. 4 (3): 35. doi:10.3390/microorganisms4030035. Retrieved September 23, 2017.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ a b c Martin, Rebeca; Sylvie Miquel; Jonathan Ulmer; Noura Kechaou; Philippe Langella; Luis G Bermúdez-Humarán (July 23, 2013). "Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease". NCBI. 12 (71). doi:10.1186/1475-2859-12-71. Retrieved October 7, 2017.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. (September 2006). "Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids". Applied Microbiology and Biotechnology. 72 (3): 421–429. doi:10.1007/s00253-006-0514-3. {{cite journal}}: |access-date= requires |url= (help)
  8. ^ Archibald, Frederick S.; Fridovich, Irwin (June 1981). "Manganese, Superoxide Dismutase, and Oxygen Tolerance in Some Lactic Acid Bacteria". Journal of Bacteriology. 146 (3): 928–936. Retrieved October 5, 2017.
  9. ^ Smalla, Pamela L.C; Watermanb, Scott R (June 1998). "Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli". Trends in Microbiology. 6 (6): 214–216. doi:10.1016/S0966-842X(98)01285-2. {{cite journal}}: |access-date= requires |url= (help)
  10. ^ Archibald, Frederick S.; Fridovich, Irwin (June 1981). "Manganese, Superoxide Dismutase, and Oxygen Tolerance in Some Lactic Acid Bacteria". Journal of Bacteriology. 146 (3): 928–936. Retrieved October 5, 2017.
  11. ^ a b c d e f g h i Zhang LS, Davies SS (April 2016). "Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions". Genome Med. 8 (1): 46. doi:10.1186/s13073-016-0296-x. PMC 4840492. PMID 27102537. Lactobacillus spp. convert tryptophan to indole-3-aldehyde (I3A) through unidentified enzymes [125]. Clostridium sporogenes convert tryptophan to IPA [6], likely via a tryptophan deaminase. ... IPA also potently scavenges hydroxyl radicals
    Table 2: Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease
    Figure 1: Molecular mechanisms of action of indole and its metabolites on host physiology and disease
  12. ^ Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (March 2009). "Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites". Proc. Natl. Acad. Sci. U.S.A. 106 (10): 3698–3703. Bibcode:2009PNAS..106.3698W. doi:10.1073/pnas.0812874106. PMC 2656143. PMID 19234110. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes.
    IPA metabolism diagram
  13. ^ "3-Indolepropionic acid". Human Metabolome Database. University of Alberta. Retrieved 12 June 2018.
  14. ^ Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (July 1999). "Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid". J. Biol. Chem. 274 (31): 21937–21942. doi:10.1074/jbc.274.31.21937. PMID 10419516. S2CID 6630247. [Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.
  15. ^ Mendes-Soares, Helena; Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J. (2014-04-01). "Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment". Journal of Bacteriology. 196 (7): 1458–1470. doi:10.1128/JB.01439-13. ISSN 0021-9193. PMC 3993339. PMID 24488312.
  16. ^ Basharat, Z; Yasmin, A (2015). "Survey of compound microsatellites in multiple Lactobacillus genomes". Canadian Journal of Microbiology. 61 (12): 898–902. doi:10.1139/cjm-2015-0136. ISSN 0008-4166.
  17. ^ "Archived copy". Archived from the original on 2007-02-02. Retrieved 2007-02-02. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  18. ^ (IJSEM, Paper in Press).
  19. ^ a b Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (April 2014). "Review article: fungal microbiota and digestive diseases". Aliment. Pharmacol. Ther. 39 (8): 751–766. doi:10.1111/apt.12665. PMID 24612332. In addition, GI fungal infection is reported even among those patients with normal immune status. Digestive system-related fungal infections may be induced by both commensal opportunistic fungi and exogenous pathogenic fungi. ...
    In vitro, bacterial hydrogen peroxide or organic acids can inhibit C. albicans growth and virulence61
    In vivo, Lactobacillus sp. can inhibit the GI colonisation and infection of C. albicans62
    In vivo, C. albicans can suppress Lactobacillus sp. regeneration in the GI tract after antibiotic therapy63, 64
  20. ^ a b Erdogan A, Rao SS (April 2015). "Small intestinal fungal overgrowth". Curr Gastroenterol Rep. 17 (4): 16. doi:10.1007/s11894-015-0436-2. PMID 25786900. Small intestinal fungal overgrowth (SIFO) is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal (GI) symptoms. Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics. However, only recently, there is emerging literature that an overgrowth of fungus in the small intestine of non-immunocompromised subjects may cause unexplained GI symptoms. ... Fungal-bacterial interaction may act in different ways and may either be synergistic or antagonistic or symbiotic [29]. Some bacteria such as Lactobacillus species can interact and inhibit both the virulence and growth of Candida species in the gut by producing hydrogen peroxide [30]. Any damage to the mucosal barrier or disruption of GI microbiota with chemotherapy or antibiotic use, inflammatory processes, activation of immune molecules and disruption of epithelial repair may all cause fungal overgrowth [27].
  21. ^ a b c d Vilela, Simone FG; Barbosa, Júnia O; Rossoni, Rodnei D; Santos, Jéssica D; Prata, Marcia CA; Ana Lia Anbinder, Ana Lia (February 2015). "Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella". Virulence. 6 (1): 29–39. doi:10.4161/21505594.2014.981486. {{cite journal}}: |access-date= requires |url= (help)
  22. ^ Axelsson, L. T.; Chung, T. C.; Dobrogosz, W. J.; Lindgren, S. E. (April 1988). "Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus reuteri". Microbial Ecology in Health and Disease. 2 (2): 131–136. doi:10.3109/08910608909140210. {{cite journal}}: |access-date= requires |url= (help)
  23. ^ Brink, B. ten; Minekus, M.; van der Vossen, J.M.B.M.; Leer, R.J.; Huis in't Veld, J.H.J. (August 1994). "Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46". Journal of Applied Microbiology. 77 (2): 140–148. doi:10.1111/j.1365-2672.1994.tb03057.x. {{cite journal}}: |access-date= requires |url= (help)
  24. ^ Ford, Alexander C; Quigley, Eamonn M M; Lacy, Brian E; Lembo, Anthony J; Saito, Yuri A; Schiller, Lawrence R; Soffer, Edy E; Spiegel, Brennan M R; Moayyedi, Paul (2014). "Efficacy of Prebiotics, Probiotics, and Synbiotics in Irritable Bowel Syndrome and Chronic Idiopathic Constipation: Systematic Review and Meta-analysis". The American Journal of Gastroenterology. 109 (10): 1547–1561. doi:10.1038/ajg.2014.202. ISSN 0002-9270. PMID 25070051.
  25. ^ a b c Ruggiero, Paolo (November 15, 2014). "Use of Probiotics in the fight against Helicobacter pylori". NCBI. 5 (4): 384-391. doi:10.4291/wjgp.v5.i4.384. Retrieved September 23, 2017.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. ^ a b Cribby, Sarah; Michelle Taylor; Greg Reid (March 9, 2009). "Vaginal Microbiota and the Use of Probiotics". NCBI. 2008. doi:10.1155/2008/256490.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  27. ^ Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John (2017). "Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior". Nature Communications. 8: 15062. doi:10.1038/ncomms15062.
  28. ^ Twetman, S; Stecksén-Blicks, C (2008). "Probiotics and oral health effects in children". International Journal of Paediatric Dentistry. 18 (1): 3–10. doi:10.1111/j.1365-263X.2007.00885.x. PMID 18086020.
  29. ^ Meurman, J. H.; Stamatova, I (2007). "Probiotics: Contributions to oral health". Oral Diseases. 13 (5): 443–51. doi:10.1111/j.1601-0825.2007.01386.x. PMID 17714346.
  30. ^ a b c d Grenier, Daniel; et al. (October 2009). "Probiotics for Oral Health: Myth or Reality?" (PDF). Professional Issues. Vol. 75, NO. 8: 585–590 – via Google. {{cite journal}}: |volume= has extra text (help); Explicit use of et al. in: |last= (help)
  31. ^ Inglin, Raffael C. (2015). "High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species". Journal of Microbiological Methods. 114 (July 2015): 26–29. doi:10.1016/j.mimet.2015.04.011.

External links