TGV: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Dexbot (talk | contribs)
m Removing Link FA template (handled by wikidata) - The interwiki article is not featured
separating information between TGV (the train) and LGV (the tracks), the latter moved to High-speed rail in France article
Line 61: Line 61:


[[File:TGVDuplex Arriere.JPG|thumb|right|A TGV Duplex trainset coupled to a Reseau trainset leaving Paris [[Gare de Lyon]]]]
[[File:TGVDuplex Arriere.JPG|thumb|right|A TGV Duplex trainset coupled to a Reseau trainset leaving Paris [[Gare de Lyon]]]]

Other LGVs are:
*[[LGV Atlantique]] (LN2) to [[Tours]]/[[Le Mans]] (construction begun 1985, in operation 1989);
*[[LGV Nord|LGV Nord-Europe]] (LN3) to [[Calais]] and the Belgian border (construction begun 1989, in operation 1993);
*[[LGV Rhône-Alpes]] (LN4), extending the LGV Sud-Est to [[Valence, Drôme|Valence]] (construction begun 1990, in operation 1992);
*[[LGV Méditerranée]] (LN5) to [[Marseille]] (construction begun 1996, in operation 2001);
*[[LGV Est]] (LN6) from Paris to [[Strasbourg]] (first phase inaugurated on 15 March 2007 and in operation summer 2007);
*[[LGV Perpignan-Figueras]] (LN7) (in operation December 2010);
*[[LGV Rhin-Rhône]] (LN8) (first phase opened 2011) – in its first month of operation, more than 1,000,000 passengers traveled on the line.

High-speed lines based on LGV technology connecting with the French network have been built in Belgium, the Netherlands and the United Kingdom.


The [[Eurostar]] service began operation in 1994, connecting [[continental Europe]] to London via the [[Channel Tunnel]] and the LGV Nord-Europe with a version of the TGV designed for use in the tunnel and the United Kingdom. The first phase of the British [[High Speed 1]] line, or Channel Tunnel Rail Link, was completed in 2003, the second phase in November 2007. The fastest trains take 2 hours 15 minutes London–Paris and 1 hour 51 minutes London–Brussels.
The [[Eurostar]] service began operation in 1994, connecting [[continental Europe]] to London via the [[Channel Tunnel]] and the LGV Nord-Europe with a version of the TGV designed for use in the tunnel and the United Kingdom. The first phase of the British [[High Speed 1]] line, or Channel Tunnel Rail Link, was completed in 2003, the second phase in November 2007. The fastest trains take 2 hours 15 minutes London–Paris and 1 hour 51 minutes London–Brussels.
Line 122: Line 111:
{{Reflist|group=t}}
{{Reflist|group=t}}


==Tracks==
{{further2|[[TGV track construction]]}}

{{Unreferenced section|date=January 2010}}

The newest high-speed lines allow speeds of {{convert|320|km/h|mph|0|abbr=on}} in normal operation: originally LGVs were defined as lines permitting speeds greater than {{convert|200|km/h|mph|0|abbr=on}}, revised to {{convert|250|km/h|mph|0|abbr=on}}. Like most high-speed trains in Europe, TGVs also run on conventional tracks ({{lang-fr|link=no|lignes classiques}}), at the normal maximum speed for those lines, up to {{convert|220|km/h|mph|0|abbr=on}}. This allows them to reach secondary destinations or city centres without building new tracks all the way, reducing costs compared to the [[magnetic levitation train]] solutions in Japan and China, for example, or complete high-speed networks with a different gauge from the surrounding conventional networks, in Spain and Japan, for example.

===Track design===
{{main|High-speed railway line}}
[[TGV track construction]] has a few key differences from normal railway lines. The [[radius|radii]] of curves are larger so that trains can traverse them at higher speeds without increasing the [[centripetal acceleration]] felt by passengers. The radii of LGV curves have historically been greater than {{convert|4|km|abbr=on}}: new lines have minimum radii of {{convert|7|km|abbr=on}} to allow for future increases in speed.

LGVs can incorporate steeper [[Grade (slope)|gradients]] than normal. This facilitates planning and reduces their cost of construction. The high power/weight and adhesive weight/total weight ratios of TGVs allow them to climb much steeper grades than conventional trains. The considerable momentum at high speeds also helps to climb these slopes very fast without greatly increasing energy consumption. The Paris-Sud-Est LGV has grades of up to 3.5% (on the German NBS high-speed line between [[Cologne]] and [[Frankfurt]] they reach 4%). On a high-speed line it is possible to have greater [[superelevation]] (cant), since all trains are travelling at the same (high) speed and a train stopping on a curve is a very rare event. Curve radii in high-speed lines have to be large, but increasing the superelevation allows for tighter curves while supporting the same train speed. Allowance for tighter curves can reduce construction costs by reducing the number and/or length of tunnels or viaducts and the volume of earthworks.

Track alignment is more precise than on normal railway lines, and [[track ballast|ballast]] is in a deeper-than-normal [[Profile (engineering)|profile]], resulting in increased load-bearing capacity and track stability. LGV track is anchored by more sleepers/ [[railroad ties|ties]] per kilometre than normal, and all are made of concrete, either mono- or bi-bloc, the latter consisting of two separate blocks of concrete joined by a steel bar. Heavy rail ([[International Union of Railways|UIC]] 60) is used and the rails are more upright, with an inclination of 1 in 40 as opposed to 1 in 20 on normal lines. Use of continuously welded rails in place of shorter, jointed rails yields a comfortable ride at high speed, without the "clickety-clack" vibrations induced by rail joints.

The points/[[railroad switch|switches]] are different from those on the ''lignes classiques''. Every LGV set of points incorporates a [[swingnose crossing]] (''coeur à pointe mobile'' or 'moveable point frog'), which eliminates the gap in rail support that causes shock and vibration as wheels of a train pass over the 'frog' of conventional points. Eliminating these gaps makes the passage of a TGV over LGV switches imperceptible to passengers, reduces stresses on wheels and track, and permits much higher speeds, {{convert|160|km/h|mph|0|abbr=on}}. At junctions, such as the junction on the TGV Atlantique where the line to Le Mans diverges from the line to Tours, special points designed for higher speeds are installed which permit a diverging speed of {{convert|220|km/h|mph|0|abbr=on}}.

The diameter of tunnels is greater than normally required by the size of the trains, especially at entrances. This limits the effects of air pressure changes and noise pollution such as [[tunnel boom]], which can be problematic at TGV speeds.

===Traffic limitations===
LGVs are reserved primarily for TGVs. One reason for this is that capacity is sharply reduced when trains of differing speeds are mixed. Passing freight and passenger trains also constitute a safety risk, as cargo on freight cars could be destabilised by the air turbulence caused by the TGV.

The permitted [[axle load]] on LGV lines is 17 t, imposed to prevent heavy rolling stock from prematurely damaging the very accurate track alignment ('surface') required for high-speed operation. Conventional trains hauled by locomotives are generally not allowed, since the axle load of a typical European electric locomotive exceeds 20 t. Freight trains are generally not permitted except for mail trains run by the French postal service, using specially adapted TGV rolling stock. TGV power cars, the lightweight streamlined locomotives at both ends of TGV trainsets, are within the 17 t limit, but when the double-deck [[TGV Duplex]] trains were introduced in the 1990s special design efforts were needed (a 'hunt for kilograms,' ''chasse aux kilos'') to reduce weight to ensure that they conformed to the 17 t limit.

The steep gradients common on LGVs would limit the weight of slow freight trains. Slower trains would also mean that the maximum track cant (banking on curves) would be limited, so for the same maximum speed a mixed-traffic LGV would need to be built with curves of even larger radius. Such track would be much more expensive to build and maintain.

Some stretches of less-used LGV are routinely mixed-traffic, such as the [[Tours]] branch of the LGV Atlantique and the planned [[Nîmes]]/[[Montpellier]] branch of the LGV Mediterranée. The British [[High Speed 1]] from the [[Channel Tunnel]] to London has been built with passing loops to support freight use, but this facility is used infrequently.

Maintenance on LGVs is carried out at night, when no TGVs are running.

Outside France, LGV-type lines often carry non-TGV intercity traffic, often as a requirement of the initial funding commitments.{{Citation needed|date=July 2007}} The Belgian LGV from Brussels to Liège carries {{convert|200|km/h|mph|0|abbr=on}} loco-hauled trains, with both the Dutch [[HSL-Zuid]] and British High Speed 1 planned to carry {{convert|225|km/h|mph|0|abbr=on}} domestic intercity services and {{convert|300|km/h|mph|0|abbr=on}} international services. The Channel Tunnel is not an LGV, but it uses LGV-type TVM signalling for mixed freight, shuttle and Eurostar traffic at between {{convert|100|and|160|km/h|abbr=on|-1}}. The [[train path|standard pathway]] for allocation purposes is the time taken by a Eurotunnel shuttle train (maximum speed {{convert|140|km/h|mph|0|abbr=on}}) to traverse the tunnel. A single Eurostar running at {{convert|160|km/h|mph|0|abbr=on}} occupies 2.67 standard paths; a second Eurostar running 3 minutes behind the first "costs" only a single additional path, so Eurostar services are often flighted 3 minutes apart between London and Lille. A freight train running at {{convert|120|km/h|mph|0|abbr=on}} occupies 1.33 paths, at {{convert|100|km/h|mph|0|abbr=on}} 3 paths. This illustrates the problem of mixed traffic at different speeds.{{Citation needed|date=July 2007}}

{|class="wikitable"
! Train Class !! Speed !! Paths !!
|-
| Eurostar || 160 km/h || 2⅔ || "catches up" with earlier trains
|-
| Eurostar (average for two) || 160 km/h || 1 || consecutive "flighted pair" at same speed
|-
| Eurotunnel Shuttle || 140 km/h || 1 || optimal usage, all trains at same speed
|-
| Multi-modal freight || 120 km/h || 1⅓ || "holds up" train behind it
|}

===Power supply===
{{Expand section|date=April 2009}}

LGVs are all [[railway electrification system|electrified]] at [[25 kV AC|25 kV 50 Hz AC]]. [[Overhead lines|Catenary]] wires are kept at a greater mechanical tension than normal lines because the [[Pantograph (rail)|pantograph]] causes [[oscillation]]s in the wire, and the [[wave]] must travel faster than the train to avoid producing [[standing wave]]s that would cause the wires to break. This was a problem when rail speed record attempts were made in 1990; tension had to be increased further still to accommodate train speeds of over {{convert|500|km/h|abbr=on}}. On LGVs only the rear pantograph is raised, avoiding amplification of the oscillations created by a front pantograph. The front power car is supplied by a cable along the roof of the train. Eurostar trains are long enough that oscillations are [[damping|damped]] sufficiently between the front and rear power cars (British designers were wary of running a high-power line through passenger carriages, thus the centrally located power cars in the ill-fated [[Advanced Passenger Train]]), so the two power cars could be connected without a high voltage cable through passenger vehicles. The same applies when two TGVs run in multiple. On ''lignes classiques'', slower maximum speeds prevent oscillation problems, and on DC lines both pantographs must be raised to draw sufficient current.

===Separation===
LGVs are fenced to prevent trespassing by animals and people. [[Level crossing]]s are not permitted and overbridges have sensors to detect objects that fall onto the track.

All LGV junctions are [[grade separation|grade-separated]], the tracks crossing each other using [[flying junction|flyovers]] or tunnels, eliminating crossings on the level.

==Signalling==
[[File:RepereBoard.svg|thumb|Signalling block marker]]
{{Main|Transmission Voie-Machine}}
{{Unreferenced section|date=January 2010}}
Because TGVs on LGVs travel too fast for their drivers to see and react to traditional lineside [[railway signal|signals]], an automated system called TVM, "[[Transmission Voie-Machine]]" (track-to-train transmission) is used for signalling.<ref>The TGV Signalling System, http://www.railfaneurope.net/tgv/signals.html</ref> Information is transmitted to trains by electrical pulses sent through the rails, providing speed, target speed, and stop/go indications directly to the driver via dashboard-mounted instruments. This high degree of automation does not eliminate driver control, though there are safeguards that can safely stop the train in the event of driver error.

An LGV is divided into signal blocks of about 1500&nbsp;m (≈1&nbsp;mile) with the boundaries marked by blue boards with a yellow triangle. Dashboard instruments show the maximum permitted speed for the current block and a target speed based on the profile of the line ahead. The speeds are based on factors such as the proximity of trains ahead (with steadily decreasing speeds permitted in blocks closer to the rear of the next train), [[junction (rail)|junction]] placement, speed restrictions, the top speed of the train and distance from the end of the LGV. As trains cannot usually stop within one signal block, which can range in length from a few hundred metres to a few kilometres, drivers are alerted to slow gradually several blocks before a required stop.

Two versions, [[TVM-430]] and TVM-300, are in use. TVM-430 was first installed on the LGV Nord to the [[Channel Tunnel]] and Belgium, and supplies trains with more information than TVM-300. Among other benefits, TVM-430 allows a train's onboard computer to generate a continuous speed control curve in the event of an emergency brake activation, effectively forcing the driver to reduce speed safely without releasing the brake by displaying the Flashing Signal Aspects on the speedometer. When the flashing signal is displayed, the driver must apply the brake and target speed will be more constrained at the next block section.

The signalling system is normally permissive: the driver of a train is permitted to proceed into an occupied block section without first obtaining authorisation. Speed is limited to {{convert|30|km/h|abbr=on}}, and if it exceeds {{convert|35|km/h|abbr=on}} the emergency brake is applied. If the board marking the entrance to the block section is accompanied by a sign marked Nf, ''non-franchissable'' (non-passable) the block section is not permissive, and the driver must obtain authorisation from the PAR, "Poste d'Aiguillage et de Régulation" (Signalling and Control Centre), before entering. Once a route is set or the PAR has provided authorisation, a white lamp above the board is lit to inform the driver. The driver acknowledges the authorisation by a button on the control panel. This disables the emergency braking, which would otherwise occur when passing over the ground loop adjacent to the Nf board.

When trains enter or leave LGVs they pass over a ground loop that automatically switches the driver's dashboard indicators to the appropriate signalling system. For example, a train leaving an LGV for a "ligne classique" has its TVM system deactivated and its traditional KVB "Contrôle de Vitesse par Balises" (beacon speed control) system enabled.

The most recent LGV, [[LGV Est]], is equipped with [[European Train Control System]] Level 2<ref>ERTMS Levels, http://www.ertms.com/media/2428/fact-3.pdf</ref> signalling together with TVM-430.<ref>'Integrating ETCS Level 2 together with TVM-430 on TGV Est,' http://www.railwaygazette.com/news/single-view/view//integrating-etcs-level-2-with-tvm430-on-tgv-est.html</ref> It is equipped with [[GSM-R]] radio communications, one component of the [[European Rail Traffic Management System]]: the communications-based ETCS Level 2 signalling system is the other component, which makes use of the radio network. Trains can operate using either signalling system. Domestic TGVs use TVM-430, while TGV POS trainsets that operate into Germany use ETCS Level 2. ETCS Level 2 and TVM-430 use the same block sections, but use different means (radio links for ETCS, and track-to-train transmission for TVM-430) to transmit signal information to trains. Since ERTMS is mandated for eventual adoption throughout the European Union,<ref>'EC sets out ERTMS deployment deadlines,' http://www.railwaygazette.com/news/single-view/view/10/ec-sets-out-ertms-deployment-deadlines.html</ref> similar installations including ETCS signalling are expected on future LGVs.

==Stations==
[[File:Paris Gare de Lyon dsc03797.jpg|thumb|right|The trainshed at Paris Gare de Lyon]]
[[File:Avignon tgv station.jpg|thumb|right|[[Gare d'Avignon TGV|Avignon TGV station]]]]
[[File:TGV train in Rennes station DSC08944.jpg|thumb|right|TGV Réseau trainset 540 at [[Rennes]], in [[Brittany]]]]
[[File:Eurostar, thalys at gare du nord.jpg|thumb|right|[[Eurostar]] and [[Thalys]] PBA side-by-side in Paris [[Gare du Nord]]]]
[[File:BrusselsSouthTGVThalys.JPG|thumb|TGV and Thalys share a platform at [[Brussels-South railway station]]]]
{{Main|List of TGV stations}}

One of the main advantages of TGV over technologies such as [[Magnetic levitation train|magnetic levitation]] is that TGVs can use existing infrastructure. This makes connecting city centre stations such as Paris-[[Gare de Lyon]] and [[Gare de Lyon-Perrache|Lyon-Perrache]] by TGV a simple and inexpensive proposition, using existing intra-city tracks and stations built for conventional trains.

LGV route designers have tended to build new intermediate stations in suburban areas or in the open countryside several kilometers away from cities. This allows TGVs to stop without incurring too great a time penalty, since more time is spent on high-speed track; in addition, many cities' stations are stub-ends, while LGVs frequently bypass cities. In some cases, stations have been built halfway between two communities, such as the station serving [[Montceau-les-Mines]] and [[Le Creusot]], and [[Gare TGV Haute-Picardie|Haute Picardie]] station between [[Amiens]] and [[Saint-Quentin, Aisne|Saint-Quentin]]. The press and local authorities criticised Haute Picardie as being too far from either town to be convenient, and too far from connecting railway lines to be useful for travellers. The station was nicknamed ''la gare des betteraves'' ('beet station') as it was surrounded by [[sugar beet]] fields during construction. That said, the station is now used by a reasonable amount of people, especially impressive as it has no service to Paris (so not to extract passengers from Amiens station).<ref>Le Point (issue 1682, 9 December 2004), ''[http://www.lepoint.fr/dossiers_villes/document.html?did=156715 « Terre des sens » sur de nouveaux rails]'' (in French). Retrieved 24 November 2005.</ref> This nickname is now applied to similar stations away from town and city centres, whether in the vicinity of beet fields or not.

New railway stations have been built for TGVs, some of which are major architectural achievements. [[Gare d'Avignon TGV|Avignon TGV station]], opened in 2001, has been praised as one of the most remarkable stations on the network, with a spectacular 340&nbsp;m (1,115&nbsp;ft)-long glazed roof that has been compared to that of a cathedral.<ref>''[http://travel.timesonline.co.uk/article/0,,26016-1633961,00.html Party like a pope in Avignon]'' [[The Times]], retrieved 12 December 2005.</ref><ref>''Les gares nouvelles de Provence du TGV Méditerranée'' (in French) Bulletin annuel de l'AFGC (issue 3, January 2001), pp. 49–51.</ref><ref>(23 July 2001), ''[http://www.guardian.co.uk/arts/critic/feature/0,1169,671705,00.html Gee whizz! Jonathan Glancey takes in three stunning new TGV stations as he hurtles towards the Cote d'Azur at 200 mph.]'' [[The Guardian]] Retrieved 13 December 2005</ref>


==Rolling stock==
==Rolling stock==
Line 419: Line 325:
They are numbered from 800, and are limited to {{convert|320|km/h|abbr=on}}. ERTMS makes them compatible to allow access to Spain in support Dasye.
They are numbered from 800, and are limited to {{convert|320|km/h|abbr=on}}. ERTMS makes them compatible to allow access to Spain in support Dasye.


==Network==
[[File:France TGV.png|thumb|Overview of French TGV lines]]
In October 2014 there were approximately 2,037&nbsp;km of ''{{lang|fr|[[High-speed rail|Lignes à Grande Vitesse]]}}'' (LGV), with four additional line sections under construction. The current lines and those under construction can be grouped into four routes radiating from Paris and one that does not connect to Paris:
* South-west: [[LGV Atlantique]] to Tours and Le Mans.
* North: [[LGV Nord]] to Brussels, connecting to [[High Speed 1]] to London.
* East: [[LGV Est]] to Strasbourg.
* South-east: [[LGV Sud-Est]], [[LGV Rhône-Alpes]] and [[LGV Méditerranée]] to Marseille, plus [[LGV Rhin-Rhône]] and [[LGV Perpignan-Figueres]].
[[LGV Interconnexion Est]] connects LGV Sud-Est to LGV Nord around Paris.
* East: [[LGV Rhin-Rhône]] connects Strasbourg and Lyon, still mostly on classical tracks.

===Existing lines===
# [[LGV Sud-Est]] (Paris [[Gare de Lyon]] to [[Gare de Lyon-Perrache|Lyon-Perrache]]), the first LGV (opened 1981)<ref name="QuidTGVstats">[http://www.quid.fr/zoom/index.php/2007/11/14/151-transports-trains-eurostar-au-coeur-de-londres-en-tgv-100-grande-vitesse?page=3 Quid.fr, Autres TGV]</ref>
# [[LGV Atlantique]] (Paris [[Gare Montparnasse]] to [[Tours]] and [[Le Mans]]) (opened 1990)
# [[LGV Rhône-Alpes]] (Lyon to [[Valence, Drôme|Valence]]) (opened 1992)
# [[LGV Nord]], [[HSL 1]] (Paris [[Gare du Nord]] to [[Lille]] and [[Brussels]] and on towards London, [[Amsterdam]] ([[HSL-Zuid]]) and [[Cologne]]) (opened 1993)
# [[LGV Interconnexion Est]] (LGV Sud-Est to LGV Nord Europe, east of Paris) (opened 1994)
# [[LGV Méditerranée]] (An extension of LGV Rhône-Alpes: Valence to [[Gare de Marseille Saint Charles|Marseille Saint Charles]]) with a branch to Nîmes (opened 2001)
# [[High Speed 1]] ([[Channel Tunnel]] to [[St Pancras railway station|London St Pancras International]]) (Phase 1 opened 2003, phase 2 opened 14 November 2007)
# [[LGV Est]] (Paris Gare de l'Est-[[Strasbourg]]) (first phase opened 10 June 2007)<ref>Le Moniteur-Expert (24 October 2005), ''[http://www.lemoniteur-expert.com/depeches/contenu/depeche.asp?dep_id=D7DED79E4&mode=0&info=1 Fin des travaux de génie civil de la LGV Est européenne]'' (in French). Retrieved 23 November 2005.</ref>
# [[LGV Perpignan-Figueres]] (Spain to France) (construction finished 17 February 2009, TGV service from 19 December 2010)<ref>http://www.railwaygazette.com/nc/news/single-view/view/tgv-tickets-to-figueres-on-sale.html</ref>
# [[LGV Rhin-Rhône]]<ref name="lgvrhinrhone.com">http://www.lgvrhinrhone.com/index_bas.html</ref> ([[Lyon]]–[[Dijon]]–[[Mulhouse]]), first phase opened 11 December 2011.

===Lines under construction===

# [[LGV Est]] second phase; due to open March 2016.
# [[LGV Sud Europe Atlantique]] ([[Tours]]–[[Bordeaux]]), extending the southern branch of the [[LGV Atlantique]] (also called LGV Sud-Ouest);<ref>{{cite web |url= http://www.railwaygazette.com/news/single-view/view/10/extra-funds-will-speed-up-french-investment.html |title= Extra funds will speed up French investment | publisher=[[Railway Gazette]] |date= 4 February 2009 |accessdate=27 August 2009}}</ref> due to open in 2017.
# [[LGV Bretagne-Pays de la Loire]] ([[Le Mans]]–[[Rennes]]), extending the western branch of the [[LGV Atlantique]];<ref name ="bret fund">{{cite web |title=Funding agreed for LGV Bretagne |url=http://www.railwaygazette.com/news/single-view/view/10/funding-agreed-for-lgv-bretagne.html |publisher=[[Railway Gazette]] |date=31 July 2008 |accessdate=27 August 2009}}</ref><ref name ="Bretagne LGV">{{cite web |title=Three shortlisted for LGV Bretagne |url=http://www.railwaygazette.com/news/single-view/view//three-shortlisted-for-lgv-bretagne.html |publisher=[[Railway Gazette]] |date=29 June 2009 |accessdate=27 August 2009}} {{Dead link|date=September 2010|bot=H3llBot}}</ref> due to open in May 2017.
# {{link-interwiki|en=Nîmes-Montpellier high-speed rail line|lang=fr|lang_title=Contournement de Nîmes et de Montpellier|en_text=Nîmes-Montpellier bypass}} extending the south-western stub of the [[LGV Méditerranée]] by 60&nbsp;km towards the Spanish border; due to open in December 2017.

===Planned lines===
# [[LGV Rhin-Rhône]]<ref name="lgvrhinrhone.com"/> ([[Lyon]]–[[Dijon]]–[[Mulhouse]]), second phase of the eastern branch construction initially planned to start in 2014, but funding unclear
# [[LGV Bordeaux–Toulouse]]
# [[Turin–Lyon high-speed railway|Lyon–Turin]] ([[Lyon]]–[[Chambéry]]–[[Turin]]), connecting to the Italian [[Treno Alta Velocità|TAV]] network.<ref name ="futureplans">{{cite web |url= http://www.railwaygazette.com/news/single-view/view/10/long-term-tgv-plans.html |title= Long-term TGV plans | publisher=[[Railway Gazette]] |date=2 June 2008 |accessdate=27 August 2009}}</ref>
# {{link-interwiki|en=Bordeaux-Spanish border high-speed rail line|lang=fr|lang_title=LGV Bordeaux - Espagne|en_text=Bordeaux–Spanish border}}<ref>{{cite web |url=http://www.railwaygazette.com/nc/news/single-view/view/bordeaux-to-spain-high-speed-line-approved.html/ |title=Bordeaux – Espagne | publisher=Railway Gazette|accessdate=21 April 2012}}</ref>
# {{link-interwiki|en=Montpellier-Perpignan high-speed rail line|lang=fr|lang_title=Ligne nouvelle Montpellier-Perpignan|en_text=Montpellier–Perpignan}}
# Extension to [[Narbonne]] of the [[LGV Bordeaux–Toulouse]]
# Western and southern branches of the [[LGV Rhin-Rhone]].
# [[LGV Poitiers-Limoges]]<ref>{{cite web |url=http://www.debatpublic-lgvpoitierslimoges.org/index.html |title= CPDP Projet LGV Poitiers – Limoges | publisher=debatpublic.org |accessdate=1 May 2009}}</ref>
# [[LGV Picardie]] (Paris–[[Amiens]]–[[Calais]]), cutting off the corner of the LGV Nord-Europe via Lille.<ref name="futureplans"/>
# [[LGV Provence-Alpes-Côte d'Azur]] ([[Marseille]]–[[Nice]]), would reduce Paris–Nice travel times from 5h25 to 3h50.<ref name ="Provence LGV">{{cite web |title=France Approves Route for Marseille-Nice TGV|url=http://thetransportpolitic.com/2009/07/01/france-approves-route-for-marseille-nice-tgv|publisher=The Transport Politic|accessdate=1 July 2009}}</ref>
# [[LGV Paris-Cherbourg]] would run from Paris to Rouen, Le Havre, Caen and Cherbourg. The line would have a stop in La Défense where it would meet with a proposed link to LGV Nord and a proposed Eurostar service to terminate in La Défense.<ref>http://www.railwaygazette.com/news/single-view/view/10/normandie-upgrading-moves-ahead.html</ref>
# [[Second Paris - Lyon LGV]] On 30 July 2010, the government of then [[Nicolas Sarkozy|President Sarkozy]] announced that it expected to start work on a second LGV between Paris and Lyon between 2020 and 2030. The train would run via Orléans and Clermont-Ferrand, at a length of 410&nbsp;km, and is expected to cost €12bn.<ref>http://www.railwaygazette.com/news/single-view/view/10/snit-makes-rail-a-priority.html</ref> The route will be known as LGV POCL (Paris, Orléans, Clermont-Ferrand and Lyon). Four potential routes are being studied as of 2011, with consultations continuing into 2012. Work would not start before 2025.<ref>http://www.railwaygazette.com/nc/news/single-view/view/paris-to-clermont-ferrand-high-speed-line-plans-outlined.html</ref>

Amsterdam and Cologne are served by [[Thalys]] TGVs running on a combination of ordinary and high-speed tracks. London is served by [[Eurostar]] trains running on [[High Speed 1]].


==TGV technology outside France==
==TGV technology outside France==

Revision as of 14:22, 28 December 2014

TGV
File:TGV 2012 Logo.png
Three TGV trains at Paris Gare de l'Est
Overview
LocaleFrance, Belgium, Luxembourg, Germany, Switzerland, Italy, Spain
Dates of operation1980–
Technical
Track gauge1,435 mm (4 ft 8+12 in)
Other
Websitetgv.com

The TGV (French: Train à Grande Vitesse, "high-speed train") is France's high-speed rail service, operated by SNCF Voyages, the long-distance rail branch of SNCF, the national rail operator.

It was developed during the 1970s by GEC-Alsthom (now Alstom) and SNCF. Originally designed as turbotrains to be powered by gas turbines, the prototypes evolved into electric trains with the 1973 oil crisis. Following the inaugural service between Paris and Lyon in 1981 on the LGV Sud-Est (LGV (French: Ligne à Grande Vitesse, high-speed line)), the network, centred on Paris, has expanded to connect many cities across France and in adjacent countries on combinations of high-speed and conventional lines.

A TGV test train set the record for the fastest wheeled train, reaching 574.8 km/h (357.2 mph) on 3 April 2007.[1] In mid-2011, scheduled TGV trains operated at the highest speeds in conventional train service in the world,[citation needed] regularly reaching 320 km/h (200 mph) on the LGV Est, LGV Rhin-Rhône and the LGV Méditerranée.

According to Railway Gazette in 2007, a TGV was the fastest scheduled rail journey with a start-to-stop average speed of 279.4 km/h (173.6 mph) between Champagne-Ardenne TGV and Lorraine TGV,[2][3] until July 2013, when it was surpassed by the Chinese Harmony express.[4]

The commercial success of the first LGV, the LGV Sud-Est, led to an expansion of the network to the south (LGV Rhône-Alpes and LGV Méditerranée), and new lines in the west (LGV Atlantique), north (LGV Nord), and east (LGV Est). Eager to emulate the TGV success, neighbouring countries Italy, Spain, and Germany developed their own high-speed rail services. The TGV system itself extends to neighbouring countries, either directly (Switzerland and Italy) or through TGV-derivative networks linking France to Belgium, Germany, and the Netherlands (Thalys), as well as France and Belgium to the United Kingdom (Eurostar). Several future lines are planned, including extensions within France and to surrounding countries. Cities such as Tours have become part of a "TGV commuter belt" around Paris.

In 2007, SNCF generated profits of €1.1 billion (approximately US$1.75 billion, £875 million) driven largely by higher margins on the TGV network.[5][6]

History

A TGV driver's cab

The idea of the TGV was first proposed in the 1960s, after Japan had begun construction of the Shinkansen (the bullet train) in 1959. At the time the French government favoured new technology, exploring the production of hovercraft and the Aérotrain air-cushion vehicle. Simultaneously, SNCF began researching high-speed trains on conventional tracks. In 1976, the government agreed to fund the first line. By the mid-1990s, the trains were so popular that SNCF president Louis Gallois declared TGV "The train that saved French railways".[7]

Development

It was originally planned that the TGV, then standing for très grande vitesse (very high speed) or turbine grande vitesse (high-speed turbine), would be propelled by gas turbines, selected for their small size, good power-to-weight ratio and ability to deliver high power over an extended period. The first prototype, TGV 001, was the only gas-turbine TGV: following the increase in the price of oil during the 1973 energy crisis, gas turbines were deemed uneconomic and the project turned to electricity from overhead lines, generated by new nuclear power stations.

TGV 001 was not a wasted prototype:[8] its gas turbine was only one of its many new technologies for high-speed rail travel. It also tested high-speed brakes, needed to dissipate the large amount of kinetic energy of a train at high speed, high-speed aerodynamics, and signalling. It was articulated, i.e. two adjacent carriages shared a bogie, allowing free yet controlled motion with respect to one another. It reached 318 km/h (198 mph), which remains the world speed record for a non-electric train. Its interior and exterior were styled by British-born designer Jack Cooper, whose work formed the basis of early TGV designs, including the distinctive nose shape of the first power cars.

Changing the TGV to electric traction required a significant design overhaul. The first electric prototype, nicknamed Zébulon, was completed in 1974, testing features such as innovative body mounting of motors, pantographs, suspension and braking. Body mounting of motors allowed over 3 tonnes to be eliminated from the power cars and greatly reduced the unsprung weight. The prototype travelled almost 1,000,000 km (620,000 mi) during testing.

In 1976 the French government funded the TGV project, and construction of the LGV Sud-Est, the first high-speed line (French: ligne à grande vitesse), began shortly afterwards. The line was given the designation LN1, Ligne Nouvelle 1, (New Line 1).

After two pre-production trainsets (nicknamed Patrick and Sophie) had been tested and substantially modified, the first production version was delivered on 25 April 1980.

Service history

The LGV opened to the public between Paris and Lyon on 27 September 1981. Contrary to its earlier fast services, SNCF intended TGV service for all types of passengers, with the same initial ticket price as trains on the parallel conventional line. To counteract the popular misconception that the TGV would be a premium service for business travellers, SNCF started a major publicity campaign focusing on the speed, frequency, reservation policy, normal price, and broad accessibility of the service.[9] This commitment to a democratised TGV service was enhanced in the Mitterrand era with the promotional slogan "Progress means nothing unless it is shared by all".[10] The TGV was considerably faster than normal trains, cars, or aeroplanes. The trains became widely popular, the public welcoming fast and practical travel.

A TGV Duplex trainset coupled to a Reseau trainset leaving Paris Gare de Lyon

The Eurostar service began operation in 1994, connecting continental Europe to London via the Channel Tunnel and the LGV Nord-Europe with a version of the TGV designed for use in the tunnel and the United Kingdom. The first phase of the British High Speed 1 line, or Channel Tunnel Rail Link, was completed in 2003, the second phase in November 2007. The fastest trains take 2 hours 15 minutes London–Paris and 1 hour 51 minutes London–Brussels.

Milestones

The TGV was the world's fourth commercial and third standard gauge high-speed train service,[11] after Japan's Shinkansen, which connected Tokyo and Osaka from 1 October 1964 (full service in 1975), the Russian ER200 around 1964 (full service in 1984), and Britain's InterCity 125 on main lines such as the East Coast Main Line, which entered service in 1976.

TGV, Record runs

The TGV holds the world speed record for conventional trains. On 3 April 2007 a modified TGV POS train reached 574.8 km/h (357.2 mph) under test conditions on the LGV Est between Paris and Strasbourg. The line voltage was boosted to 31 kV, and extra ballast was tamped onto the right-of-way. The train beat the 1990 world speed record of 515.3 km/h (320.2 mph), set by a similarly shortened train (two power cars and three passenger cars), along with unofficial records set during weeks preceding the official record run. The test was part of an extensive research programme by Alstom.[12][13]

In 2007 the TGV was the world's fastest conventional scheduled train: one journey's average start-to-stop speed from Lorraine-TGV to Champagne-Ardenne-TGV is 279.3 km/h (173.5 mph).[2][3] This record was surpassed on 26 December 2009 by the new Wuhan-Guangzhou High-Speed Railway[14] in China where the fastest scheduled train covered 922 km (573 mi) at an average speed of 312.54 km/h (194.20 mph). However, on 1 July 2011 in order to save energy and reduce operating costs the maximum speed of Chinese high-speed trains was reduced to 300 km/h, and the average speed of the fastest trains on the Wuhan-Guangzhou High-Speed Railway was reduced to 272.68 km/h (169 mph), slower than the TGV.

A Eurostar train broke the record for the longest non-stop high-speed international journey on 17 May 2006 carrying the cast and filmmakers of The Da Vinci Code from London to Cannes for the Cannes Film Festival. The 1,421-kilometre (883 mi) journey took 7 hours 25 minutes (average of 191.6 km/h (119.1 mph)).[15]

The fastest long distance run was by a TGV Réseau train from Calais-Frethun to Marseille (1067.2 km, 663 mi) in 3 hours 29 minutes (306 km/h (190 mph)) for the inauguration of the LGV Méditerranée on 26 May 2001.[16]

Passenger usage

On 28 November 2003 the TGV network carried its one billionth passenger, a distant second only to the Shinkansen's five billionth passenger in 2000.

Excluding international traffic, the TGV system carried 98 million passengers during 2008, an increase of 8 million (9.1%) on the previous year.[17]

Decade Passengers[18] (in millions)
1980s 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1.26 6.08 9.20 13.77 15.38 15.57 16.97 18.10 19.16
1990s
[t 1][t 2]
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
29.93 37.00 39.30 40.12 43.91 46.59 55.73 62.60 71.00 74.00
2000s 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
79.70 83.50 87.90 86.70 90.80 94.00 97.00 114.00 122.00
2010s 2010
114.45
  1. ^ from 1994 including Eurostar
  2. ^ from 1997 including Thalys


Rolling stock

TGVs have semi-permanently coupled articulated un-powered coaches, with Jacobs bogies between the coaches supporting both of them. Power cars at each end of the trains have their own bogies. Trains can be lengthened by coupling two TGVs, using couplers hidden in the noses of the power cars.

The articulated design is advantageous during a derailment, as the passenger carriages are more likely to stay upright and in line with the track. Normal trains could split at couplings and jackknife, as seen in the Eschede train disaster.

A disadvantage is that it is difficult to split sets of carriages. While power cars can be removed from trains by standard uncoupling procedures, specialised depot equipment is needed to split carriages, by lifting the entire train at once. Once uncoupled, one of the carriage ends is left without a bogie at the split, so a bogie frame is required to support it.

There are about 550 TGVs, of seven types:

  • SNCF TGV Sud-Est (passengers) and TGV La Poste (freight),
  • SNCF TGV Atlantique (10 carriages)
  • SNCF TGV Réseau (similar to Atlantique, but 8 carriages)
  • Eurostar/SNCF TGV TMST ("Three Capitals" - Bruxelles, Londres, Paris)
  • SNCF TGV Duplex (two floors for greater passenger capacity),
  • Thalys PBA and PBKA (Benelux countries, derived from Réseau and Duplex respectively),
  • SNCF TGV POS (Paris-Ostfrankreich-Süddeutschland, or Paris-Eastern France-Southern Germany).
  • SNCF TGV 2N2 (upgrade of Duplex)

Several TGV types have broken records, including the V150 and TGV 001. V150 was a specially modified five-car double-deck trainset that reached 574.8 km/h (357.2 mph) under controlled conditions on a test run. It narrowly missed beating the world train speed record of 581 km/h (361 mph).[19] The record-breaking speed is impractical for commercial trains due to motor overcharging, empty train weight, rail and engine wear issues, elimination of all but three coaches, excessive vibration, noise and lack of emergency stopping methods.

TGVs travel at up to 320 km/h (200 mph) in commercial use. All are at least bi-current, which means that they can operate at 25 kV, 50 Hz AC (including LGVs) and at 1.5 kV DC (such as the 1.5 kV lignes classiques south of Paris). Trains to Germany, Switzerland, Belgium and the Netherlands must accommodate other voltages, requiring tri-current and quadri-current TGVs. TGVs have two pairs of pantographs, two for AC use and two for DC. When passing between areas of different supply voltage, marker boards remind the driver to turn off power, lower the pantograph(s), adjust a switch to select the appropriate system, and raise the pantograph(s). Pantographs and pantograph height control are selected automatically based on the voltage system chosen by the driver. Once the train detects the correct supply, a dashboard indicator illuminates and the driver can switch on the traction motors. The train coasts across the boundary between sections.

Equipment type Top speed Seating
capacity
Overall length Width Weight,
empty (t)
Weight,
full (t)
Power,
at 25 kV (kW)
Power-to-weight ratio,
empty (W/kg)
First
built
km/h mph m ft m ft
TGV Sud-Est 270, 300 (rebuilt) 170, 190 (rebuilt) 345 200 660 2.81 9.2 385 418 6,450 16.75 1978
TGV Atlantique* 300 190 485, 459 (rebuilt) 238 781 2.90 9.5 444 484 8,800 19.82 1988
TGV Réseau 320 200 377, 361 (rebuilt) 200 660 2.90 9.5 383 415 8,800 22.98 1992
TGV TMST Three Capitals 300 190 750 394 1,293 2.81 9.2 752 816 12,240 16.28 1993
TGV TMST North of London 300 190 596 319 1,047 2.81 9.2 665   12,240 18.41 1993
TGV Duplex 320 200 512 200 660 2.90 9.5 380 424 8,800 23.16 1994
Thalys PBKA 300 190 377, 374 (rebuilt) 200 660 2.90 9.5 385 415 8,800 22.86 1997
TGV POS 320 200 361 200 660 2.90 9.5 383 415 9,280 24.23 2005
TGV 2N2 320 200 509 200 660 2.90 9.5 380 424 9,400 24.74 2011

TGV Sud-Est

A TGV Sud-Est set in the original orange livery, since superseded by silver and blue
A TGV Réseau on an enhanced ordinary track
A TGV Réseau second-generation train at Marseille St-Charles

The Sud-Est fleet was built between 1978 and 1988 and operated the first TGV service, from Paris to Lyon in 1981. There are 107 passenger sets, of which nine are tri-current (including 15 kV, 16⅔ Hz AC for use in Switzerland) and the rest bi-current. There are seven bi-current half-sets without seats that carry mail for La Poste between Paris, Lyon and Provence, in a distinctive yellow livery.

Each set is made up of two power cars and eight carriages (capacity 345 seats), including a powered bogie in the carriages adjacent to the power cars. They are 200 m (660 ft) long and 2.81 m (9.2 ft) wide. They weigh 385 tonnes with a power output of 6,450 kW under 25 kV.

The sets were built to run at 270 km/h (170 mph) but most were upgraded to 300 km/h (190 mph) during mid-life refurbishment in preparation for the opening of the LGV Méditerranée. The few sets that still have a maximum speed of 270 km/h operate on those routes that include a comparatively short distance on LGV, such as to Switzerland via Dijon: SNCF did not consider it financially worthwhile to upgrade their speed for a marginal reduction in journey time.

TGV Atlantique

The 105-strong bi-current Atlantique fleet was built between 1988 and 1992 for the opening of the LGV Atlantique and entry into service began in 1989. They are 237.5 m (779 ft) long and 2.9 m (9.5 ft) wide. They weigh 444 tonnes, and are made up of two power cars and ten carriages with a capacity of 485 seats. They were built with a maximum speed of 300 km/h (190 mph) and 8,800 kW of power under 25 kV. The efficiency of the Atlantique with all seats filled has been calculated at 767 PMPG, though with a typical occupancy of 60% it is about 460 PMPG (a Toyota Prius with three passengers is 144 PMPG).[20]

Modified unit 325 set the world speed record in 1990 on the LGV before its opening. Modifications such as improved aerodynamics, larger wheels and improved braking were made to enable speeds of over 500 km/h (310 mph). The set was reduced to two power cars and three carriages to improve the power-to-weight ratio, weighing 250 tonnes. Three carriages, including the bar carriage in the centre, is the minimum possible configuration because of the articulation.

TGV Réseau

The first Réseau (Network) sets entered service in 1993. Fifty bi-current sets were ordered in 1990, supplemented by 40 tri-current sets in 1992/1993. Ten tri-current sets carry the Thalys livery and are known as Thalys PBA (Paris-Brussels-Amsterdam) sets. As well as using standard French voltages, the tri-current sets can operate under the Netherlands' 1.5 kV and Italian and Belgian 3 kV DC supplies.

They are formed of two power cars (8,800 kW under 25 kV – as TGV Atlantique) and eight carriages, giving a capacity of 377 seats. They have a top speed of 320 km/h. They are 200 m (660 ft) long and are 2.90 m (9.5 ft) wide. The bi-current sets weigh 383 tonnes: owing to axle-load restrictions in Belgium the tri-current sets have a series of modifications, such as the replacement of steel with aluminium and hollow axles, to reduce the weight to under 17 t per axle.

Owing to early complaints of uncomfortable pressure changes when entering tunnels at high speed on the LGV Atlantique, the Réseau sets are now pressure-sealed. They can be coupled to a Duplex set.

Eurostar

Eurostar at London St Pancras. These long trains connect London with Paris and Brussels, are narrower to fit the British loading gauge (this was required when operating out of Waterloo), and have extensive fireproofing.

The Eurostar train is essentially a long TGV,[21] modified for use in the United Kingdom and in the Channel Tunnel. Differences include a smaller cross-section to fit within the constrictive British loading gauge (though High Speed 1 can accommodate Berne gauge traffic, this feature was required when Eurostar trains operated on existing tracks between London Waterloo and the Channel Tunnel), British-designed asynchronous traction motors, and extensive fireproofing in case of fire in the Channel Tunnel. They also have yellow front panels, which are required for all trains operating on track owned by Network Rail or High Speed 1 in the UK.

In the UK they are called Class 373. In the planning stages they were called TransManche Super Train (Cross-channel Super Train). They were built by GEC-Alsthom (now Alstom) in La Rochelle (France), Belfort (France) and Washwood Heath (England), entering service in 1993.

Two types were built: Three Capitals sets, consisting of two power cars and 18 carriages, including two with one powered bogie each; and North of London sets, with 14 carriages. They consist of two identical half-sets that are not articulated in the middle, so that in case of emergency in the Channel Tunnel one half can be uncoupled and leave the tunnel. Each half-set is numbered separately.

Thirty-eight full sets, plus one spare power car, were ordered: 16 by SNCF, four by SNCB/NMBS, and 18 by British Rail, of which seven were North of London sets. Upon privatisation of British Rail by the UK Government, the BR sets were bought by London and Continental Railways (LCR), whose subsidiary Eurostar (UK) Ltd was managed by a consortium of National Express (40%), SNCF (35%), SNCB/NMBS (15%) and British Airways (10%) from 1998 to 2010. Following the merger of the separate Eurostar operators on 1 September 2010, ownership of all jointly owned sets transferred to the parent company, Eurostar International Limited.

The sets operate at a maximum speed of 300 km/h (190 mph), with the power cars supplying 12,240 kW of power. The Three Capitals sets are 394 m (1,293 ft) long and have 766 seats, weighing 752 tonnes. The North of London sets have 558 seats. All are at least tri-current and are able to operate on 25 kV, 50 Hz AC (on LGVs, including High Speed 1, and on UK overhead electrified lines), 3 kV DC on lignes classiques in Belgium and 750 V DC on the UK former Southern Region third rail network. The third-rail equipment became obsolete in 2007 when the second phase of High Speed 1 was brought into use between London and the Channel Tunnel, which uses 25 kV, 50 Hz AC. Five of the Three Capitals sets owned by SNCF are quadri-current and are able to operate on French lignes classiques at 1500 V DC.

The TGV Duplex power cars use a more streamlined nose than previous TGVs
TGV Duplex power car in profile
TGV Duplex trains have bi-level carriages
A Thalys PBKA at Köln Hauptbahnhof
Eurostar, Thalys and TGV PSE No 81 at Paris Gare du Nord

Three of the Three Capitals sets owned by SNCF are in French domestic use and carry the silver and blue TGV livery. The North of London sets, intended to provide regional Eurostar services from continental Europe to UK cities north of London using the West Coast and East Coast Main Lines, have never seen regular international use: budget airlines in the UK offered lower fares. A few of the sets were leased to GNER for use on some services from London King's Cross to York and Leeds, with two carrying its dark blue livery. The lease ended in December 2005[22] and a year later the same sets were working SNCF services to Calais in Eurostar livery, albeit with the Eurostar branding and yellow front panels removed.[23]

The chief executive of Eurostar, Richard Brown, suggested that the trains could be replaced by double-deck trains similar to the TGV Duplex when they are withdrawn. A double-deck fleet could carry 40 million passengers per year from England to Continental Europe, equivalent to adding an extra runway at a London airport.[24]

Eurostar has higher security measures than other TGVs.[25] Luggage is screened and passengers are, in principle, required to check in 30 minutes before departure, although this requirement is seldom enforced. Because the UK is not part of the Schengen Area, and because France and Belgium are not part of the Common Travel Area, passengers are subject to immigration checks. These take place before passengers board the train, so officials from the UK Border Agency are stationed in France and Belgium, with their French counterparts stationed in the UK.

TGV Duplex

The Duplex was built to increase TGV capacity without increasing train length or the number of trains. Each carriage has two levels, with access doors at the lower level taking advantage of low French platforms. A staircase gives access to the upper level, where the gangway between carriages is located. There are 512 seats per set. On busy routes such as Paris-Marseille they are operated in pairs, providing 1,024 seats in two Duplex sets or 800 in a Duplex set plus a Reseau set. Each set has a wheelchair accessible compartment.

After a lengthy development process starting in 1988 (during which they were known as the TGV-2N) the original batch of 30 was built between 1995 and 1998. Further deliveries started in 2000 with the Duplex fleet now totalling 160 units, making it the backbone of the SNCF TGV-fleet. They weigh 380 tonnes and are 200 m (660 ft) long, made up of two power cars and eight carriages. Extensive use of aluminium means that they weigh not much more than the TGV Réseau sets they supplement. The bi-current power cars provide 8,800 kW, and they have a slightly increased speed of 320 km/h (200 mph).

Thalys PBKA

Unlike Thalys PBA sets, the PBKA (Paris-Brussels-Cologne-Amsterdam) sets were built exclusively for Thalys. They are technologically similar to TGV Duplex sets, but single deck. They are quadri-current, operating under 25 kV, 50 Hz AC (LGVs), 15 kV 16⅔ Hz AC (Germany, Switzerland), 3 kV DC (Belgium) and 1.5 kV DC (Dutch and French lignes classiques). Their top speed is 300 km/h (186 mph) under 25 kV, with two power cars supplying 8,800 kW. When operating under 15 kV power output drops to 3,680 kW, resulting in a very poor power-to-weight-ratio on German high-speed lines.[26] They have eight carriages and are 200 m (660 ft) long, weighing a total of 385 tonnes. They have 377 seats.

Seventeen trains were ordered: nine by SNCB/NMBS, six by SNCF and two by NS. Deutsche Bahn contributed to financing two of the SNCB/NMBS sets.

TGV POS

TGV POS (Paris-Ostfrankreich-Süddeutschland or Paris-Eastern France-Southern Germany) are used on the LGV Est.

They consist of two power cars with eight TGV Réseau-type carriages, with a power output of 9,600 kW and a top speed of 320 km/h (200 mph). Unlike TGV-A, TGV-R and TGV-D, they have asynchronous motors, and isolation of an individual motor is possible in case of failure.

TGV 2N2

The bi-current 2N2 can be regarded as the fourth generation of Duplex. The series was commissioned from December 2011 for links to Germany and Switzerland (tri-current trains) and to cope with the increased traffic due to the opening of the LGV Rhine-Rhone.

They are numbered from 800, and are limited to 320 km/h (200 mph). ERTMS makes them compatible to allow access to Spain in support Dasye.


TGV technology outside France

TGV technology has been adopted in a number of other countries:[27]

Future TGVs

SNCF and Alstom are investigating new technology that could be used for high-speed transport. The development of TGV trains is being pursued in the form of the Automotrice à grande vitesse (AGV) high-speed multiple unit with motors under each carriage.[34] Investigations are being carried out with the aim of producing trains at the same cost as TGVs with the same safety standards. AGVs of the same length as TGVs could have up to 450 seats. The target speed is 360 kilometres per hour (220 mph). The prototype AGV was unveiled by Alstom on 5 February 2008.[35]

Italian operator NTV is the first customer for the AGV, and intends to become the first open-access high-speed rail operator in Europe, starting operation in 2011.[33]

In the short term, plans are being considered to increase the capacity of TGVs by 10% by replacing the central two power cars of a double TGV with passenger carriages. These carriages would have motorized bogies, as do the first and last carriage of the train, to make up for the lost power.[36]

Accidents

In almost three decades of high-speed operation, the TGV has not recorded a single fatality due to accident while running at high speed. There have been several accidents, including three derailments at or above 270 km/h (170 mph), but in none of these did carriages overturn. This is credited in part to the stiffness that the articulated design lends to the train. There have been fatal accidents involving TGVs on lignes classiques, where the trains are exposed to the same dangers as normal trains, such as level crossings. These include one terrorist bombing, which could as well have occurred at high speed as not.

On LGVs

  • 14 December 1992: TGV 920 from Annecy to Paris, operated by set 56, derailed at 270 km/h (170 mph) at Mâcon-Loché TGV station (Saône-et-Loire). A previous emergency stop had caused a wheel flat; the bogie concerned derailed while crossing the points at the entrance to the station. No one on the train was injured, but 25 passengers waiting on the platform for another TGV were slightly injured by ballast that was thrown up from the trackbed.
  • 21 December 1993: TGV 7150 from Valenciennes to Paris, operated by set 511, derailed at 300 km/h (190 mph) at the site of Haute Picardie TGV station, before it was built. Rain had caused a hole to open up under the track; the hole dated from the First World War but had not been detected during construction. The front power car and four carriages derailed but remained aligned with the track. Of the 200 passengers, one was slightly injured.
  • 5 June 2000: Eurostar 9073 from Paris to London, operated by sets 3101/2 owned by SNCB/NMBS, derailed at 250 km/h (160 mph) in the Nord-Pas de Calais region near Croisilles.[37] The transmission assembly on the rear bogie of the front power car failed, with parts falling onto the track. Four bogies out of 24 derailed. Out of 501 passengers, seven were bruised[38] and others treated for shock.[39]

On lignes classiques

  • 31 December 1983: A bomb allegedly planted by the terrorist organisation of Carlos the Jackal exploded on board a TGV from Marseille to Paris; two people were killed.
  • 28 September 1988: TGV 736, operated by set 70 "Melun", collided with a lorry carrying an electric transformer weighing 100 tonnes that had become stuck on a level crossing in Voiron, Isère. The vehicle had not obtained the required crossing permit from the French Direction départementale de l'équipement. The weight of the lorry caused a very violent collision; the train driver and a passenger died, and 25 passengers were slightly injured.
  • 4 January 1991: after a brake failure, TGV 360 ran away from Châtillon depot. The train was directed onto an unoccupied track and collided with the car loading ramp at Paris-Vaugirard station at 60 km/h (37 mph). No one was injured. The leading power car and the first two carriages were severely damaged, and were rebuilt.
  • 25 September 1997: TGV 7119 from Paris to Dunkerque, operated by set 502, collided at 130 km/h (81 mph) with a 70 tonne asphalt paving machine on a level crossing at Bierne, near Dunkerque. The power car spun round and fell down an embankment. The front two carriages left the track and came to a stop in woods beside the track. Seven people were injured.
  • 31 October 2001: TGV 8515 from Paris to Irun derailed at 130 km/h (81 mph) near Dax in southwest France. All ten carriages derailed and the rear power unit fell over. The cause was a broken rail.
  • 30 January 2003: a TGV from Dunkerque to Paris collided at 106 km/h (66 mph) with a heavy goods vehicle stuck on the level crossing at Esquelbecq in northern France. The front power car was severely damaged, but only one bogie derailed. Only the driver was slightly injured.
  • 19 December 2007: a TGV from Paris to Geneva collided at about 100 km/h (62 mph) with a truck on a level crossing near Tossiat in eastern France, near the Swiss border. The driver of the truck died; on the train, one person was seriously injured and 24 were slightly injured.[40]
  • On 17 July 2014, a TER train ran into the rear of a TGV at Denguin, Pyrénées-Atlantiques. Forty people were injured.

Following the number of accidents at level crossings, an effort has been made to remove all level crossings on lignes classiques used by TGVs. The ligne classique from Tours to Bordeaux at the end of the LGV Atlantique has no level crossings as a result.

Protests against the TGV

The first environmental protests against the building of an LGV occurred in May 1990 during the planning stages of the LGV Méditerranée. Protesters blocked a railway viaduct to protest against the planned route, arguing that it was unnecessary, and that trains could use existing lines to reach Marseille from Lyon.[41]

Lyon Turin Ferroviaire (Lyon-Chambéry-Turin), which would connect the TGV network to the Italian TAV network, has been the subject of demonstrations in Italy. While most Italian political parties agree on the construction of this line, inhabitants of the towns where construction would take place are vehemently opposing it.[citation needed] The concerns put forward by the protesters centre on storage of dangerous materials mined during tunnel boring, like asbestos and perhaps uranium, in the open air.[citation needed]. This health danger could be avoided by using more expensive techniques for handling radioactive materials.[citation needed] A six-month delay in the start of construction has been decided in order to study solutions. In addition to the concerns of the residents, RFB – a ten-year-old national movement – opposes the development of Italy's TAV high-speed rail network as a whole.[42]

General complaints about the noise of TGVs passing near towns and villages have led the SNCF to build acoustic fencing along large sections of LGV to reduce the disturbance to residents, but protests still take place where SNCF has not addressed the issue.[43]

Special Services

In addition to its standard services, TGV also provides mail and "low cost" travel services

For many years, a service termed SNCF TGV La Poste has been transporting mail for the French mail service, La Poste . It uses windowless but otherwise standard TGV rolling stock, painted in the yellow and blue livery of La Poste

In 2013 a new "low cost" TGV service was created by SNCF. It was called Ouigo and was designed to mimic and challenge low cost airline services

See also

Notes and references

  1. ^ "French Train Hits 357 mph Breaking World Speed Record". foxnews.com. 4 April 2007. Retrieved 11 February 2010.
  2. ^ a b ,"World Speed Survey: New lines boost rail's high speed performance". Railway Gazette International. 4 September 2007. Retrieved 1 May 2009.
  3. ^ a b Railway Gazette International 2007 World Speed Survey Tables Railway Gazette International (September 2007)
  4. ^ "World Speed Survey 2013: China sprints out in front". Railway Gazette International. Retrieved 2 July 2013.
  5. ^ David Gow (9 July 2008). "Europe's rail renaissance on track". guardian.co.uk. London. Retrieved 9 February 2010.
  6. ^ Ben Fried (15 July 2008). "French Trains Turn $1.75B Profit, Leave American Rail in the Dust". Streetsblog New York City. streetsblog.org. Retrieved 9 February 2010.
  7. ^ Fender, Keith (August 2010). "TGV: High Speed Hero". Trains Magazine. 70 (8). Kalmbach.
  8. ^ "Early TGV history". TGVWeb. Retrieved 18 April 2008.
  9. ^ Meunier, Jacob. On The Fast Track: French Railway Modernisation and the Origins of the TGV, 1944–1983. pp. 209–210.
  10. ^ Meunier, Jacob. On The Fast Track: French Railway Modernisation and the Origins of the TGV, 1944–1983. p. 7.
  11. ^ "General definitions of highspeed". UIC. 28 November 2006. Archived from the original on 10 December 2006. Retrieved 3 January 2007.
  12. ^ "Alstom commits itself to the French very high speed rail programme". Alstom. 18 December 2006. Retrieved 4 February 2007. [dead link]
  13. ^ "French high-speed TGV breaks world conventional rail-speed record". Deutsche Presse-Agentur (reprinted by Monsters and Critics). 14 February 2007. Retrieved 14 February 2007.
  14. ^ Wuhan-Guangzhou line opens at 380 km/h, http://www.railwaygazette.com/news/single-view/view//wuhan-guangzhou-line-opens-at-380-kmh.html
  15. ^ "Eurostar sets new Guinness World Record with cast and filmmakers of Columbia Pictures' The Da Vinci Code". Eurostar. 17 May 2006. Retrieved 15 February 2007.
  16. ^ "French train breaks speed record". BBC News. 27 May 2001. Retrieved 26 August 2007.
  17. ^ "Bilan de l'année 2008 : Perspectives 2009" (PDF) (in French). SNCF. 12 February 2009. Retrieved 7 March 2009.
  18. ^ Pepy, G.: 25 Years of the TGV. Modern Railways 10/2006, p. 67 – 74
  19. ^ "French Train Sets New World Speed Record". London. [dead link]
  20. ^ Energy Efficiency of different modes of transportation, accessed March 21, 2009
  21. ^ Martin Wilckens & Gunther Ellewanger. "High speed for Europe" (PDF). Japan Railway & Transport Review. Retrieved 1 May 2009.
  22. ^ RAIL (pages 14–15, issue 527, 23 November 2005 – 6 December 2005), Class 91s to replace GNER's Eurostars
  23. ^ Webster, Ben (6 July 2007). "Trains for high-speed link handed over to the French". London: The Times. Retrieved 9 April 2009. {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  24. ^ RAIL (page 11, issue 529, 21 December 2005 – 3 January 2006), Double decked trains could be replacement for Eurostars
  25. ^ "Eurostar boosts passenger security at ashford international". Eurostar. Retrieved 26 April 2009.
  26. ^ Alain Jeunesse and Michel Rollin (March 2004). "La motorisation du TGV POS" (in French). Retrieved 4 July 2007.
  27. ^ "French Railway Industry: The paths of excellence" (PDF). DGE/UBIFRANCE. Retrieved 1 May 2009. [dead link]
  28. ^ Ryo Takagi. "High-speed Railways:The last ten years" (PDF). Japan Railway & Transport Review. Retrieved 1 May 2009.
  29. ^ "Korea develops high-speed ambitions: a thorough programme of research and development will soon deliver results for Korea's rail industry in the form of the indigenous KTX II high-speed train. Dr Kihwan Kim of the Korea Railroad Research Institute explains the development of the new train". BNET (International Railway Journal). May 2008. Retrieved 31 December 2008.
  30. ^ a b "TGVweb Acela Express page". TGVweb. May 2009. Retrieved 10 May 2009.
  31. ^ "Engineers begin work on Moroccan high-speed rail link". BNET (International Railway Journal). May 2008. Retrieved 9 April 2009.
  32. ^ 'Cobra' offers high speed future Railway Gazette International August 2007.
  33. ^ a b "Alstom awarded Italian AGV contract". Railway Gazette International. 17 January 2008.
  34. ^ "Alstom unveils AGV prototype train". Railway Gazette International. 5 February 2008.
  35. ^ "France unveils super-fast train". BBC News. 5 February 2008. Retrieved 5 February 2008.
  36. ^ "TGV Duplex Grande Capacite". SNCF. 1 May 2008.
  37. ^ "TGV Accidents". trainweb.org. 1 May 2009.
  38. ^ Eurostar derails; seven passengers bruised Associated Press (5 June 2000), Retrieved 24 November 2005
  39. ^ "Eurostar train derails in France". BBC News. 5 June 2000. Retrieved 10 May 2009.
  40. ^ French TGV train hits lorry and kills one Reuters UK (December 2007)
  41. ^ New Scientist (issue 1719, 2 June 1990), High-Speed Protest. Retrieved 15 November 2005.
  42. ^ Planet Ark (reprinted from Reuters 1 November 2005), Environmental Protesters Block French-Italian Railway. Retrieved 1 November 2005.
  43. ^ Environmental Science and Engineering (November 2001), Train à grande vitesse causes distress. Retrieved 24 November 2005.

Further reading

  • Cinotti, Eric and Tréboul, Jean-Baptiste (2000) Les TGV européens : Eurostar, Thalys, Paris : Presses universitaires de France, ISBN 2-13-050565-1 (in French)
  • Perren, Brian (2000) TGV handbook, 2nd ed., Harrow Weald : Capital Transport, ISBN 1-85414-195-3
  • Malaspina, Jean-Pierre (2005). Des TEE aux TGV. Trains d'Europe (in French). Vol. 1. Paris: La Vie du Rail. ISBN 2915034486. {{cite book}}: Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)
  • Soulié, Claude and Tricoire, Jean (2002). Le grand livre du TGV, Paris: La Vie du Rail, ISBN 2-915034-01-X Template:Fr icon

External links

Template:Link GA