Edit filter log

Details for log entry 36,337,996

18:30, 10 November 2023: 135.26.114.32 (talk) triggered filter 260, performing the action "edit" on Overhead power line. Actions taken: Disallow; Filter description: Common vandal phrases (examine)

Changes made in edit

==Construction==
==Construction==


[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A man working on powerlines in [[Nauru]] (2007)]]
[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A n¡gger working on powerlines in [[Nauru]] (2007)]]
Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or [[ACSR|reinforced with steel]], or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<ref name="Fink78">[[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, {{ISBN|0-07-020974-X}}, Chapter 14 ''Overhead Power Transmission''</ref>
Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or [[ACSR|reinforced with steel]], or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<ref name="Fink78">[[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, {{ISBN|0-07-020974-X}}, Chapter 14 ''Overhead Power Transmission''</ref>
Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.
Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.

Action parameters

VariableValue
Edit count of the user ($1) (user_editcount)
null
Name of the user account ($1) (user_name)
'135.26.114.32'
Age of the user account ($1) (user_age)
0
Groups (including implicit) the user is in ($1) (user_groups)
[ 0 => '*' ]
Rights that the user has ($1) (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether the user is editing from mobile app ($1) (user_app)
false
Whether or not a user is editing through the mobile interface ($1) (user_mobile)
false
Page ID ($1) (page_id)
1355057
Page namespace ($1) (page_namespace)
0
Page title without namespace ($1) (page_title)
'Overhead power line'
Full page title ($1) (page_prefixedtitle)
'Overhead power line'
Edit protection level of the page ($1) (page_restrictions_edit)
[]
Last ten users to contribute to the page ($1) (page_recent_contributors)
[ 0 => 'NoNAja', 1 => '135.26.114.32', 2 => 'GreenC bot', 3 => '82.12.148.203', 4 => 'Daniel Aborisade', 5 => 'InternetArchiveBot', 6 => 'Citation bot', 7 => '94.240.252.92', 8 => 'Bruce1ee', 9 => '45.173.118.68' ]
Page age in seconds ($1) (page_age)
594952863
Action ($1) (action)
'edit'
Edit summary/reason ($1) (summary)
''
Old content model ($1) (old_content_model)
'wikitext'
New content model ($1) (new_content_model)
'wikitext'
Old page wikitext, before the edit ($1) (old_wikitext)
'{{Short description|Above-ground structure for bulk transfer and distribution of electricity}} {{About|power lines for general transmission of electrical power|overhead lines used to power road and rail vehicles|Overhead line}} {{redirect|Power line}} {{More footnotes|date=August 2010}} [[File:Pylon ds.jpg|thumb|172px|Overhead power line in [[Gloucestershire]], [[England]].]] An '''overhead power line''' is a structure used in [[electric power transmission]] and [[Electric power distribution|distribution]] to transmit electrical energy along large distances. It consists of one or more [[electrical conductor|conductors]] (commonly multiples of three) suspended by [[Transmission tower|towers]] or [[Utility pole|poles]]. Since most of the [[electrical insulation|insulation]] is provided by air, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy. ==Construction== [[File:NAURU JULY 2007 (10709113444).jpg|thumb|A man working on powerlines in [[Nauru]] (2007)]] Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or [[ACSR|reinforced with steel]], or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<ref name="Fink78">[[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, {{ISBN|0-07-020974-X}}, Chapter 14 ''Overhead Power Transmission''</ref> Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases. == Classification by operating voltage == [[File:Łomża linia elektroenergetyczna napowietrzna.jpg|thumb|173px|High- and medium-voltage power lines in [[Łomża]], Poland]] Overhead power transmission lines are classified in the electrical power industry by the range of voltages: * Low voltage (LV) – less than 1000 volts, used for connection between a residential or small commercial customer and the utility. * Medium voltage (MV; distribution) – between 1000 volts (1 kV) and 69 kV, used for distribution in urban and rural areas. * High voltage (HV; [[subtransmission]] less than 100&nbsp;kV; subtransmission or transmission at voltages such as 115&nbsp;kV and 138&nbsp;kV), used for sub-transmission and transmission of bulk quantities of electric power and connection to very large consumers. * Extra high voltage (EHV; transmission) – from 345 kV, up to about 800 kV,<ref name=TGonen> {{cite book| author = Gönen, T. | title = Electrical Power Transmission System Engineering: Analysis and Design | publisher = CRC Press | isbn = 9781482232233 |edition=3rd | url = https://books.google.com/books?id=6KbNBQAAQBAJ | year = 2014 | pages = }}</ref>{{page needed|date=June 2018}} used for long distance, very high power transmission. * Ultra high voltage (UHV) – higher than 800 kV. The ''[[Financial Times]]'' reported UHV lines are a "game changer", making a global electricity grid potentially feasible. [[State Grid Corporation of China|StateGrid]] said that compared to conventional lines, UHV enables the transmission of five times more power, over six times the distance.<ref>{{Cite news |url= https://www.ft.com/content/2aedab32-6aa1-11e8-8cf3-0c230fa67aec |title= China's global power play |work= [[Financial Times]] |first= James |last= Kynge |date= 8 June 2018 |accessdate=10 June 2018 |url-access=registration}}</ref> ==Structures== {{See also|Transmission tower}} Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood [[Utility pole|poles]] directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type [[Electricity pylon|steel towers]] or pylons. For remote areas, aluminum towers may be placed by [[helicopter]]s.<ref>{{cite web|url=http://www.verticalmag.com/news/article/PoweringUp|archiveurl=https://web.archive.org/web/20151004113042/http://www.verticalmag.com/news/article/PoweringUp|title=Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry|archivedate=4 October 2015|work=verticalmag.com |accessdate=4 October 2015 |url-status=live}}</ref><ref>{{YouTube|GBWHUdPQCH8|[[Sunrise Powerlink]] Helicopter Operations}}</ref> Concrete poles have also been used.<ref name=Fink78/> Poles made of reinforced plastics are also available, but their high cost restricts application. Each structure must be designed for the loads imposed on it by the conductors.<ref name=Fink78/> The weight of the conductor must be supported, as well as dynamic loads due to wind and ice accumulation, and effects of vibration. Where conductors are in a straight line, towers need only resist the weight since the tension in the conductors approximately balances with no resultant force on the structure. Flexible conductors supported at their ends approximate the form of a [[catenary]], and much of the analysis for construction of transmission lines relies on the properties of this form.<ref name=Fink78/> A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures.<ref name=Fink78/> Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors. [[Image:Einebenenleitung.jpg|thumb|low-profile power lines near an [[airfield]]]] Power lines and supporting structures can be a form of [[visual pollution]]. In some cases the lines are buried to avoid this, but this "[[undergrounding]]" is more expensive and therefore not common. For a single wood [[utility pole]] structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. [[Lattice tower]] structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The [[strain insulator]]s are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed. A grounded wire is sometimes strung along the tops of the towers to provide lightning protection. An [[optical ground wire]] is a more advanced version with embedded [[optical fiber]]s for communication. [[Overhead wire marker]]s can be mounted on the ground wire to meet [[International Civil Aviation Organization]] recommendations.<ref>{{cite web|url=http://www.avaids.com/icao.pdf|title=Chapter 6. Visual aids for denoting obstacles|date=2004-11-25|work=Annex 14 Volume I Aerodrome design and operations|publisher=[[International Civil Aviation Organization]]|quote=6.2.8 ... spherical ... diameter of not less than 60 cm. ... 6.2.10 ... should be of one colour.|accessdate=1 June 2011}}</ref> Some markers include [[Balisor|flashing lamps]] for night-time warning. ===Circuits=== A ''single-circuit transmission line'' carries conductors for only one circuit. For a [[Three-phase electric power|three-phase]] system, this implies that each tower supports three conductors. A ''double-circuit transmission line'' has two circuits. For three-phase systems, each tower supports and insulates six conductors. Single phase AC-power lines as used for [[Railway electrification system|traction current]] have four conductors for two circuits. Usually both circuits operate at the same voltage. In HVDC systems typically two conductors are carried per line, but in rare cases only one pole of the system is carried on a set of towers. In some countries like Germany most power lines with voltages above 100 kV are implemented as double, quadruple or in rare cases even hextuple power line as [[rights of way]] are rare. Sometimes all conductors are installed with the erection of the pylons; often some circuits are installed later. A disadvantage of double circuit transmission lines is that maintenance can be difficult, as either work in close proximity of high voltage or switch-off of two circuits is required. In case of failure, both systems can be affected. The largest double-circuit transmission line is the [[Kita-Iwaki Powerline]]. <gallery widths="230" heights="230"> File:Single circuit overhead power line with distribution lines.png|A single-circuit 138 kV line (top) with distribution wires (bottom) File:Electric Sails.jpg|A double-circuit line File:Img0289SCE 500kV lines close.JPG|Parallel single-circuit lines File:Hamilton Beach Pylon (2).JPG|Four circuits on one tower line File:Wernau Double Pylon1.JPG|six circuits of three different types File:Stromtrasse bei Mannheim-Seckenheim.jpg|Various powerlines (110/220 kV) in Germany with double and quadruple circuits </gallery> ==Insulators== [[File:Power line with ceramic insulators.jpg|thumb|Medium-voltage power lines with ceramic insulators in California]] [[File:Pylon.detail.arp.750pix.jpg|thumb|Modular suspension insulators are used for high-voltage lines.]] [[Electrical insulation#High-voltage insulators|Insulators]] must support the conductors and withstand both the normal operating voltage and surges due to switching and [[lightning]]. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. The invention of the [[strain insulator]] was a critical factor in allowing higher voltages to be used. At the end of the 19th century, the limited electrical strength of [[telegraph]]-style [[pin insulator]]s limited the voltage to no more than 69,000 [[volt]]s. Up to about 33 kV (69 kV in North America) both types are commonly used.<ref name=Fink78/> At higher voltages only suspension-type insulators are common for overhead conductors. Insulators are usually made of wet-process [[porcelain]] or [[toughened glass]], with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels, polymer insulators ([[silicone rubber]] based) are seeing increasing usage.<ref>[http://www.ngk-locke.com/polymer.html NGK-Locke] {{Webarchive|url=https://archive.today/20120905000404/http://www.ngk-locke.com/polymer.html |date=2012-09-05 }} Polymer insulator manufacturer</ref> China has already developed polymer insulators having a highest system voltage of 1100 kV and India is currently developing a 1200 kV (highest system voltage) line which will initially be charged with 400 kV to be upgraded to a 1200 kV line.<ref>{{cite web|url= http://www.worldenergynews.com/news/abb-energizes-transformer-record-mln-volts-651995 |title=ABB Energizes Transformer At Record 1.2 Mln Volts|work=World Energy News|accessdate=7 October 2016}}</ref> Suspension insulators are made of multiple units, with the number of unit insulator disks increasing at higher voltages. The number of disks is chosen based on line voltage, lightning withstand requirement, altitude, and environmental factors such as fog, pollution, or salt spray. In cases where these conditions are suboptimal, longer insulators must be used. Longer insulators with longer creepage distance for leakage current, are required in these cases. Strain insulators must be strong enough mechanically to support the full weight of the span of conductor, as well as loads due to ice accumulation, and wind.<ref>{{Cite web |url=http://www.arp-hivoltageinsulators.com/suspension-insulators.html |title=Advanced Rubber Products - Suspension Insulators |access-date=2013-09-17 |archive-date=2022-03-18 |archive-url=https://web.archive.org/web/20220318041111/http://www.arp-hivoltageinsulators.com/suspension-insulators.html |url-status=dead }}</ref> Porcelain insulators may have a semi-conductive glaze finish, so that a small current (a few milliamperes) passes through the insulator. This warms the surface slightly and reduces the effect of fog and dirt accumulation. The semiconducting glaze also ensures a more even distribution of voltage along the length of the chain of insulator units. Polymer insulators by nature have hydrophobic characteristics providing for improved wet performance. Also, studies have shown that the specific creepage distance required in polymer insulators is much lower than that required in porcelain or glass. Additionally, the mass of polymer insulators (especially in higher voltages) is approximately 50% to 30% less than that of a comparative porcelain or glass string. Better pollution and wet performance is leading to the increased use of such insulators. Insulators for very high voltages, exceeding 200 kV, may have [[grading ring]]s installed at their terminals. This improves the electric field distribution around the insulator and makes it more resistant to flash-over during voltage surges. ==Conductors== [[File:Sample cross-section of high tension power (pylon) line.jpg|thumb|Sample cross-section of ACSR power line]] The most common conductor in use for transmission today is [[Aluminium-conductor steel-reinforced cable|aluminum conductor steel reinforced]] (ACSR). Also seeing much use is [[all-aluminum-alloy conductor]] (AAAC). Aluminum is used because it has about half the weight of a comparable resistance copper cable (though larger diameter due to lower [[specific conductivity]]), as well as being cheaper.<ref name=Fink78/> Copper was more popular in the past and is still in use, especially at lower voltages and for grounding. While larger conductors lose less energy due to lower [[electrical resistance]], they are more costly than smaller conductors. An optimization rule called ''[[Lord Kelvin|Kelvin's Law]]'' states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex by additional factors such as varying annual load, varying cost of installation, and the discrete sizes of cable that are commonly made.<ref name=Fink78/><ref>{{cite web |title=Economic Choice Of Conductor Size - Kelvin's Law |url=https://www.electricaleasy.com/2016/05/economic-choice-of-conductor-size-kelvins-law.html}}</ref> Since a conductor is a flexible object with uniform weight per unit length, the shape of a conductor strung between two towers approximates that of a [[catenary]]. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature and additional load such as ice cover. A minimum overhead clearance must be maintained for safety. Since the temperature and therefore length of the conductor increase with increasing current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower [[coefficient of thermal expansion]] or a higher allowable [[operating temperature]]. [[File:ACSR and ACCC.JPG|thumb|Conventional ACSR (left) and modern carbon core (right) conductors]] Two such conductors that offer reduced thermal sag are known as composite core conductors (ACCR and [[ACCC conductor]]). In lieu of steel core strands that are often used to increase overall conductor strength, the ACCC conductor uses a carbon and glass fiber core that offers a coefficient of thermal expansion about 1/10 of that of steel. While the composite core is nonconductive, it is substantially lighter and stronger than steel, which allows the incorporation of 28% more aluminum (using compact trapezoidal-shaped strands) without any diameter or weight penalty. The added aluminum content helps reduce line losses by 25 to 40% compared to other conductors of the same diameter and weight, depending upon electric current. The carbon core conductor's reduced thermal sag allows it to carry up to twice the current ("ampacity") compared to all-aluminum conductor (AAC) or ACSR. The power lines and their surroundings must be [[Live-line working|maintained]] by [[Lineman (technician)|linemen]], sometimes assisted by [[helicopter]]s with [[pressure washer]]s or [[circular saw]]s which may work three times faster. However this work often occurs in the dangerous areas of the [[Helicopter height–velocity diagram]],<ref name=vert2015-04>{{cite news |first=Elan |last=Head |url=http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html |title=High-value cargo |pages=80–90 |work=Vertical Magazine |date=April 2015 |accessdate=11 April 2015 |url-status=dead |archiveurl=https://web.archive.org/web/20150419023320/http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html |archivedate=19 April 2015 }}</ref><ref name=vert2015-04b>{{cite news |first=Guy R. |last=Maher |url=http://www.verticalmag.com/digital_issue/2015/v14i2/files/94.html |title=A cut above |pages=92–98 |work=Vertical Magazine |date=April 2015 |accessdate=11 April 2015|archive-url=https://web.archive.org/web/20150512160639/http://www.verticalmag.com/news/article/ACutAbove |archive-date=12 May 2015 |url-status=live}}</ref><ref>Harnesk, Tommy. "[http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece Helikoptermonterad motorsåg snabbkapar träden] {{Webarchive|url=https://web.archive.org/web/20150112025125/http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece |date=2015-01-12 }}" ''[[Ny Teknik]]'', 9 January 2015. Accessed: 12 January 2015.</ref> and the pilot must be qualified for this "[[Helicopter Flight Rescue System|human external cargo]]" method.<ref>{{Cite web |url=http://www.tdworld.com/electric-utility-operations/wapa-helicopters-saving-time-and-money |title=WAPA Helicopters: Saving Time and Money |last=Weger |first=Travis |date=2017-11-14 |website=TDWorld |access-date=2017-12-07}}</ref> ===Bundle conductors=== [[File:Pylône électrique détail 2011-2.JPG|thumb|A bundle conductor]] For transmission of power across long distances, high voltage transmission is employed. Transmission higher than 132&nbsp;kV poses the problem of [[corona discharge]], which causes significant power loss and interference with communication circuits. To reduce this corona effect, it is preferable to use more than one conductor per phase, or bundled conductors.<ref name="Grainger, John J 1994">Grainger, John J. and W. D. Stevenson Jr. Power System Analysis and Design, 2nd edition. McGraw Hill (1994).</ref> Bundle conductors consist of several parallel cables connected at intervals by spacers, often in a cylindrical configuration. The optimum number of conductors depends on the current rating, but typically higher-voltage lines also have higher current. [[American Electric Power]]<ref>{{Cite news |url=http://tdworld.com/overhead-transmission/six-wire-solution |title=Six Wire Solution] |journal=Transmission & Distribution World |first=Bruce |last=Freimark |date=October 1, 2006 |accessdate=March 6, 2007}}</ref> is building 765&nbsp;kV lines using six conductors per phase in a bundle. Spacers must resist the forces due to wind, and magnetic forces during a short-circuit. [[File:Spacer damper for four-conductor bundles.jpg|thumb|left|upright|Spacer damper for four-conductor bundles]] [[File:Pylône_électrique_détail_2011-4.JPG|thumb|Bundle conductor attachment]] Bundled conductors reduce the voltage gradient in the vicinity of the line. This reduces the possibility of corona discharge. At [[extra high voltage]], the electric field [[gradient]] at the surface of a single conductor is high enough to ionize air, which wastes power, generates unwanted audible noise and [[Electromagnetic interference|interferes]] with [[communication system]]s. The field surrounding a bundle of conductors is similar to the field that would surround a single, very large conductor—this produces lower gradients which mitigates issues associated with high field strength. The transmission efficiency is improved as loss due to corona effect is countered. Bundled conductors cool themselves more efficiently due to the increased surface area of the conductors, further reducing line losses. When transmitting alternating current, bundle conductors also avoid the reduction in [[ampacity]] of a single large conductor due to the [[skin effect]]. A bundle conductor also has lower [[Reactance (electronics)|reactance]], compared to a single conductor. While wind resistance is higher, wind-induced oscillation can be damped at bundle spacers. The ice and wind loading of bundled conductors will be greater than a single conductor of the same total cross section, and bundled conductors are more difficult to install than single conductors. ===Ground wires=== [[File:Al OC.jpg|thumb|Aluminum conductor crosslinked polyethylene insulation wire. It is used for 6600V power lines.]] Overhead power lines are often equipped with a ground conductor (shield wire, static wire, or overhead earth wire). The ground conductor is usually grounded (earthed) at the top of the supporting structure, to minimize the likelihood of direct lightning strikes to the phase conductors.<ref>{{cite book|title=The Art and Science of Lightning Protection|url=https://books.google.com/books?id=KO7fVcqispQC&pg=PA205}}</ref> In circuits with [[earthed neutral]], it also serves as a parallel path with the earth for fault currents. Very high-voltage transmission lines may have two ground conductors. These are either at the outermost ends of the highest cross beam, at two V-shaped mast points, or at a separate cross arm. Older lines may use [[surge arrester]]s every few spans in place of a shield wire; this configuration is typically found in the more rural areas of the United States. By protecting the line from lightning, the design of apparatus in substations is simplified due to lower stress on insulation. Shield wires on transmission lines may include optical fibers ([[optical ground wire]]s/OPGW), used for communication and control of the power system. [[File:Fenno-Skan HVDC power line.jpg|thumb|HVDC Fenno-Skan with ground wires used as electrode line]] At some HVDC converter stations, the ground wire is used also as the electrode line to connect to a distant grounding electrode. This allows the HVDC system to use the earth as one conductor. The ground conductor is mounted on small insulators bridged by lightning arrestors above the phase conductors. The insulation prevents electrochemical corrosion of the pylon. Medium-voltage distribution lines may also use one or two shield wires, or may have the grounded conductor strung below the phase conductors to provide some measure of protection against tall vehicles or equipment touching the energized line, as well as to provide a neutral line in Wye wired systems. On some power lines for very high voltages in the former Soviet Union, the ground wire is used for [[Power-line communication|PLC]] systems and mounted on insulators at the pylons. ===Insulated conductors and cable=== Overhead insulated cables are rarely used, usually for short distances (less than a kilometer). Insulated cables can be directly fastened to structures without insulating supports. An overhead line with bare conductors insulated by air is typically less costly than a cable with insulated conductors. A more common approach is "covered" line wire. It is treated as bare cable, but often is safer for wildlife, as the insulation on the cables increases the likelihood of a large-wing-span raptor to survive a brush with the lines, and reduces the overall danger of the lines slightly. These types of lines are often seen in the eastern United States and in heavily wooded areas, where tree-line contact is likely. The only pitfall is cost, as insulated wire is often costlier than its bare counterpart. Many utility companies implement covered line wire as jumper material where the wires are often closer to each other on the pole, such as an underground riser/[[pothead]],<!--not [[Cannabis smoking]]--> and on reclosers, cutouts and the like. === Dampers === [[File:Stockbridge_damper_POV.jpg|thumb|A Stockbridge damper]] Because power lines can suffer from [[Aeroelasticity#Flutter|aeroelastic flutter]] driven by wind, [[Stockbridge damper]]s are often attached to the lines to reduce the vibrations. ==Compact transmission lines== {{refimprove section|date=March 2012}} A compact overhead transmission line requires a smaller right of way than a standard overhead powerline. Conductors must not get too close to each other. This can be achieved either by short span lengths and insulating crossbars, or by separating the conductors in the span with insulators. The first type is easier to build as it does not require insulators in the span, which may be difficult to install and to maintain. Examples of compact lines are: * Lutsk compact overhead powerline {{coord|50.774673|N|25.385215|E|type:landmark|name=Startpoint of Lutsk Compact Overhead Powerline}} * Hilpertsau-Weisenbach compact overhead line {{coord|48.737898|N|8.355660|E|type:landmark|name=Startpoint of Hilpertsau-Weisenbach Powerline}} Compact transmission lines may be designed for voltage upgrade of existing lines to increase the power that can be transmitted on an existing right of way.<ref>Beaty, H. Wayne; Fink, Donald G. , ''Standard Handbook for Electrical Engineers (15th Edition)'' McGraw-Hill, 2007 978-0-07-144146-9 pages 14-105 through 14-106</ref> ==Low voltage== [[File:ABC TQ3157 064.JPG|thumb|Aerial bundled cable in [[Old Coulsdon]], [[Surrey]]]] Low voltage overhead lines may use either bare conductors carried on glass or ceramic insulators or an [[aerial bundled cable]] system. The number of conductors may be anywhere between two (most likely a phase and neutral) up to as many as six (three phase conductors, separate neutral and earth plus street lighting supplied by a common switch); a common case is four (three phase and neutral, where the neutral might also serve as a protective earthing conductor). ==Train power== {{main|Overhead line}} Overhead lines or overhead wires are used to transmit electrical energy to trams, trolleybuses or trains. Overhead line is designed on the principle of one or more overhead wires situated over rail tracks. Feeder stations at regular intervals along the overhead line supply power from the high-voltage grid. For some cases low-frequency AC is used, and distributed by a special [[traction current]] network. ==Further applications== Overhead lines are also occasionally used to supply transmitting antennas, especially for efficient transmission of long, medium and short waves. For this purpose a staggered array line is often used. Along a staggered array line the conductor cables for the supply of the earth net of the transmitting antenna are attached on the exterior of a ring, while the conductor inside the ring, is fastened to insulators leading to the high-voltage standing feeder of the antenna. ==Use of area under overhead power lines== Use of the area below an overhead line is limited because objects must not come too close to the energized conductors. Overhead lines and structures may shed ice, creating a hazard. Radio reception can be impaired under a power line, due both to shielding of a receiver antenna by the overhead conductors, and by partial discharge at insulators and sharp points of the conductors which creates radio noise. In the area surrounding the overhead lines it is dangerous to risk interference; e.g. flying kites or balloons, using ladders or operating machinery. Overhead distribution and transmission lines near [[airfield]]s are often marked on maps, and the lines themselves marked with conspicuous plastic reflectors, to warn pilots of the presence of conductors. Construction of overhead power lines, especially in wilderness areas, may have significant environmental effects. Environmental studies for such projects may consider the effect of bush clearing, changed migration routes for migratory animals, possible access by predators and humans along transmission corridors, disturbances of fish habitat at stream crossings, and other effects. ==Aviation accidents == [[File:High voltage transmission line aviation obstruction marker.jpg|thumb|An aviation obstruction marker on a high-voltage overhead transmission line reminds pilots of the presence of an overhead line. Some markers are lit at night or have strobe lights.]] General aviation, hang gliding, paragliding, skydiving, balloon, and kite flying must avoid accidental contact with power lines. Nearly every kite product warns users to stay away from power lines. Deaths occur when aircraft crash into power lines. Some power lines are marked with obstruction markers, especially near air strips or over waterways that may support floatplane operations. The placement of power lines sometimes use up sites that would otherwise be used by hang gliders.<ref>[http://retasite.wordpress.com/2014/09/10/aircraft-accidents-due-to-overhead-power-lines-updated/ Aircraft Accidents Due to Overhead Power Lines]</ref><ref>{{Cite web |url=http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973 |title=Pacific Gas and Electric Company Reminds Customers About Flying Kites Safely. |access-date=2014-10-20 |archive-date=2014-10-20 |archive-url=https://archive.today/20141020164701/http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973 |url-status=dead }}</ref> ==History== The first transmission of electrical impulses over an extended distance was demonstrated on July 14, 1729 by the physicist [[Stephen Gray (scientist)|Stephen Gray]].{{Citation needed|date=May 2014}} The demonstration used damp hemp cords suspended by silk threads (the low resistance of metallic conductors not being appreciated at the time). However the first practical use of overhead lines was in the context of [[electrical telegraph|telegraphy]]. By 1837 experimental commercial telegraph systems ran as far as 20&nbsp;km (13 miles). Electric power transmission was accomplished in 1882 with the first high-voltage transmission between [[Miesbach–Munich Power Transmission|Munich and Miesbach]] (60&nbsp;km). 1891 saw the construction of the first three-phase [[alternating current]] overhead line on the occasion of the International Electricity Exhibition in [[Frankfurt]], between [[Lauffen]] and Frankfurt. In 1912 the first 110 kV-overhead power line entered service followed by the first 220 kV-overhead power line in 1923. In the 1920s [[RWE]] AG built the first overhead line for this voltage and in 1926 built a [[Rhine]] crossing with the pylons of [[Voerde]], two masts 138 meters high. <!-- Milestones of years and voltages table here --> In 1953, the first 345 kV line was put into service by [[American Electric Power]] in the [[United States]]. In Germany in 1957 the first 380 kV overhead power line was commissioned (between the transformer station and Rommerskirchen). In the same year the overhead line traversing of the Strait of Messina went into service in Italy, whose [[Pylons of Messina|pylons]] served the Elbe crossing 1. This was used as the model for the building of the Elbe crossing 2 in the second half of the 1970s which saw the construction of the highest overhead line pylons of the world. Earlier, in 1952, the first 380 kV line was put into service in [[Sweden]], in 1000&nbsp;km (625 miles) between the more populated areas in the south and the largest hydroelectric power stations in the north. Starting from 1967 in Russia, and also in the USA and Canada, overhead lines for voltage of 765 kV were built. In 1982 overhead power lines were built in Soviet Union between [[Elektrostal]] and the power station at [[Ekibastuz]], this was a three-phase alternating current line at 1150 kV ([[Powerline Ekibastuz-Kokshetau]]). In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the [[Kita-Iwaki Powerline]]. In 2003 the building of the highest overhead line commenced in China, the [[Yangtze River Crossing]]. ==Mathematical analysis== An overhead power line is one example of a [[transmission line]]. At power system frequencies, many useful simplifications can be made for lines of typical lengths. For analysis of power systems, the distributed resistance, series inductance, shunt leakage resistance and shunt capacitance can be replaced with suitable lumped values or simplified networks. ===Short and medium line model=== A short length of a power line (less than 80&nbsp;km) can be approximated with a resistance in series with an inductance and ignoring the shunt admittances. This value is not the total impedance of the line, but rather the series impedance per unit length of line. For a longer length of line (80–250&nbsp;km), a shunt capacitance is added to the model. In this case it is common to distribute half of the total capacitance to each side of the line. As a result, the power line can be represented as a [[two-port network]], such as with ABCD parameters.<ref name=Glover21>J. Glover, M. Sarma, and T. Overbye, ''Power System Analysis and Design, Fifth Edition'', Cengage Learning, Connecticut, 2012, {{ISBN|978-1-111-42577-7}}, Chapter 5 ''Transmission Lines: Steady-State Operation''</ref> The circuit can be characterized as :<math>Z = z l = (R + j \omega L)l </math> where *''Z'' is the total series line [[Electrical impedance|impedance]] *''z'' is the series impedance per unit length *''l'' is the line length *<math>\omega \ </math> is the [[sinusoidal]] [[angular frequency]] The medium line has an additional shunt [[admittance]] :<math>Y = y l = j \omega C l </math> where *''Y'' is the total shunt line admittance *''y'' is the shunt admittance per unit length <gallery widths="230px" heights="100px" perrow="2"> File:Short Line Approximation.png|Short length of power line File:Med Line Approximation.png|Medium length of power line </gallery> == See also == * [[Aerial cable]] * [[Conductor marking lights]] * [[CU project controversy]] * [[Overhead cable]] * [[Overhead line]] * [[Raptor conservation]] * [[Third rail]] * [[Operation Outward]] * [[Powerline river crossings in the United Kingdom]] * [[Wireless powerline sensor|Wireless monitoring of overhead power lines]] ==References== {{Reflist|30em}} ==Further reading== {{refbegin}} * William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', McGraw-Hill, New York (1975) {{ISBN|0-07-061285-4}} == External links == * {{Commons-inline|Overhead power lines}} {{refend}} {{Electricity delivery}} {{DEFAULTSORT:Overhead power line}} [[Category:Overhead power lines| ]] [[Category:Electric power distribution]]'
New page wikitext, after the edit ($1) (new_wikitext)
'{{Short description|Above-ground structure for bulk transfer and distribution of electricity}} {{About|power lines for general transmission of electrical power|overhead lines used to power road and rail vehicles|Overhead line}} {{redirect|Power line}} {{More footnotes|date=August 2010}} [[File:Pylon ds.jpg|thumb|172px|Overhead power line in [[Gloucestershire]], [[England]].]] An '''overhead power line''' is a structure used in [[electric power transmission]] and [[Electric power distribution|distribution]] to transmit electrical energy along large distances. It consists of one or more [[electrical conductor|conductors]] (commonly multiples of three) suspended by [[Transmission tower|towers]] or [[Utility pole|poles]]. Since most of the [[electrical insulation|insulation]] is provided by air, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy. ==Construction== [[File:NAURU JULY 2007 (10709113444).jpg|thumb|A n¡gger working on powerlines in [[Nauru]] (2007)]] Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or [[ACSR|reinforced with steel]], or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<ref name="Fink78">[[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, {{ISBN|0-07-020974-X}}, Chapter 14 ''Overhead Power Transmission''</ref> Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases. == Classification by operating voltage == [[File:Łomża linia elektroenergetyczna napowietrzna.jpg|thumb|173px|High- and medium-voltage power lines in [[Łomża]], Poland]] Overhead power transmission lines are classified in the electrical power industry by the range of voltages: * Low voltage (LV) – less than 1000 volts, used for connection between a residential or small commercial customer and the utility. * Medium voltage (MV; distribution) – between 1000 volts (1 kV) and 69 kV, used for distribution in urban and rural areas. * High voltage (HV; [[subtransmission]] less than 100&nbsp;kV; subtransmission or transmission at voltages such as 115&nbsp;kV and 138&nbsp;kV), used for sub-transmission and transmission of bulk quantities of electric power and connection to very large consumers. * Extra high voltage (EHV; transmission) – from 345 kV, up to about 800 kV,<ref name=TGonen> {{cite book| author = Gönen, T. | title = Electrical Power Transmission System Engineering: Analysis and Design | publisher = CRC Press | isbn = 9781482232233 |edition=3rd | url = https://books.google.com/books?id=6KbNBQAAQBAJ | year = 2014 | pages = }}</ref>{{page needed|date=June 2018}} used for long distance, very high power transmission. * Ultra high voltage (UHV) – higher than 800 kV. The ''[[Financial Times]]'' reported UHV lines are a "game changer", making a global electricity grid potentially feasible. [[State Grid Corporation of China|StateGrid]] said that compared to conventional lines, UHV enables the transmission of five times more power, over six times the distance.<ref>{{Cite news |url= https://www.ft.com/content/2aedab32-6aa1-11e8-8cf3-0c230fa67aec |title= China's global power play |work= [[Financial Times]] |first= James |last= Kynge |date= 8 June 2018 |accessdate=10 June 2018 |url-access=registration}}</ref> ==Structures== {{See also|Transmission tower}} Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood [[Utility pole|poles]] directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type [[Electricity pylon|steel towers]] or pylons. For remote areas, aluminum towers may be placed by [[helicopter]]s.<ref>{{cite web|url=http://www.verticalmag.com/news/article/PoweringUp|archiveurl=https://web.archive.org/web/20151004113042/http://www.verticalmag.com/news/article/PoweringUp|title=Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry|archivedate=4 October 2015|work=verticalmag.com |accessdate=4 October 2015 |url-status=live}}</ref><ref>{{YouTube|GBWHUdPQCH8|[[Sunrise Powerlink]] Helicopter Operations}}</ref> Concrete poles have also been used.<ref name=Fink78/> Poles made of reinforced plastics are also available, but their high cost restricts application. Each structure must be designed for the loads imposed on it by the conductors.<ref name=Fink78/> The weight of the conductor must be supported, as well as dynamic loads due to wind and ice accumulation, and effects of vibration. Where conductors are in a straight line, towers need only resist the weight since the tension in the conductors approximately balances with no resultant force on the structure. Flexible conductors supported at their ends approximate the form of a [[catenary]], and much of the analysis for construction of transmission lines relies on the properties of this form.<ref name=Fink78/> A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures.<ref name=Fink78/> Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors. [[Image:Einebenenleitung.jpg|thumb|low-profile power lines near an [[airfield]]]] Power lines and supporting structures can be a form of [[visual pollution]]. In some cases the lines are buried to avoid this, but this "[[undergrounding]]" is more expensive and therefore not common. For a single wood [[utility pole]] structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. [[Lattice tower]] structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The [[strain insulator]]s are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed. A grounded wire is sometimes strung along the tops of the towers to provide lightning protection. An [[optical ground wire]] is a more advanced version with embedded [[optical fiber]]s for communication. [[Overhead wire marker]]s can be mounted on the ground wire to meet [[International Civil Aviation Organization]] recommendations.<ref>{{cite web|url=http://www.avaids.com/icao.pdf|title=Chapter 6. Visual aids for denoting obstacles|date=2004-11-25|work=Annex 14 Volume I Aerodrome design and operations|publisher=[[International Civil Aviation Organization]]|quote=6.2.8 ... spherical ... diameter of not less than 60 cm. ... 6.2.10 ... should be of one colour.|accessdate=1 June 2011}}</ref> Some markers include [[Balisor|flashing lamps]] for night-time warning. ===Circuits=== A ''single-circuit transmission line'' carries conductors for only one circuit. For a [[Three-phase electric power|three-phase]] system, this implies that each tower supports three conductors. A ''double-circuit transmission line'' has two circuits. For three-phase systems, each tower supports and insulates six conductors. Single phase AC-power lines as used for [[Railway electrification system|traction current]] have four conductors for two circuits. Usually both circuits operate at the same voltage. In HVDC systems typically two conductors are carried per line, but in rare cases only one pole of the system is carried on a set of towers. In some countries like Germany most power lines with voltages above 100 kV are implemented as double, quadruple or in rare cases even hextuple power line as [[rights of way]] are rare. Sometimes all conductors are installed with the erection of the pylons; often some circuits are installed later. A disadvantage of double circuit transmission lines is that maintenance can be difficult, as either work in close proximity of high voltage or switch-off of two circuits is required. In case of failure, both systems can be affected. The largest double-circuit transmission line is the [[Kita-Iwaki Powerline]]. <gallery widths="230" heights="230"> File:Single circuit overhead power line with distribution lines.png|A single-circuit 138 kV line (top) with distribution wires (bottom) File:Electric Sails.jpg|A double-circuit line File:Img0289SCE 500kV lines close.JPG|Parallel single-circuit lines File:Hamilton Beach Pylon (2).JPG|Four circuits on one tower line File:Wernau Double Pylon1.JPG|six circuits of three different types File:Stromtrasse bei Mannheim-Seckenheim.jpg|Various powerlines (110/220 kV) in Germany with double and quadruple circuits </gallery> ==Insulators== [[File:Power line with ceramic insulators.jpg|thumb|Medium-voltage power lines with ceramic insulators in California]] [[File:Pylon.detail.arp.750pix.jpg|thumb|Modular suspension insulators are used for high-voltage lines.]] [[Electrical insulation#High-voltage insulators|Insulators]] must support the conductors and withstand both the normal operating voltage and surges due to switching and [[lightning]]. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. The invention of the [[strain insulator]] was a critical factor in allowing higher voltages to be used. At the end of the 19th century, the limited electrical strength of [[telegraph]]-style [[pin insulator]]s limited the voltage to no more than 69,000 [[volt]]s. Up to about 33 kV (69 kV in North America) both types are commonly used.<ref name=Fink78/> At higher voltages only suspension-type insulators are common for overhead conductors. Insulators are usually made of wet-process [[porcelain]] or [[toughened glass]], with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels, polymer insulators ([[silicone rubber]] based) are seeing increasing usage.<ref>[http://www.ngk-locke.com/polymer.html NGK-Locke] {{Webarchive|url=https://archive.today/20120905000404/http://www.ngk-locke.com/polymer.html |date=2012-09-05 }} Polymer insulator manufacturer</ref> China has already developed polymer insulators having a highest system voltage of 1100 kV and India is currently developing a 1200 kV (highest system voltage) line which will initially be charged with 400 kV to be upgraded to a 1200 kV line.<ref>{{cite web|url= http://www.worldenergynews.com/news/abb-energizes-transformer-record-mln-volts-651995 |title=ABB Energizes Transformer At Record 1.2 Mln Volts|work=World Energy News|accessdate=7 October 2016}}</ref> Suspension insulators are made of multiple units, with the number of unit insulator disks increasing at higher voltages. The number of disks is chosen based on line voltage, lightning withstand requirement, altitude, and environmental factors such as fog, pollution, or salt spray. In cases where these conditions are suboptimal, longer insulators must be used. Longer insulators with longer creepage distance for leakage current, are required in these cases. Strain insulators must be strong enough mechanically to support the full weight of the span of conductor, as well as loads due to ice accumulation, and wind.<ref>{{Cite web |url=http://www.arp-hivoltageinsulators.com/suspension-insulators.html |title=Advanced Rubber Products - Suspension Insulators |access-date=2013-09-17 |archive-date=2022-03-18 |archive-url=https://web.archive.org/web/20220318041111/http://www.arp-hivoltageinsulators.com/suspension-insulators.html |url-status=dead }}</ref> Porcelain insulators may have a semi-conductive glaze finish, so that a small current (a few milliamperes) passes through the insulator. This warms the surface slightly and reduces the effect of fog and dirt accumulation. The semiconducting glaze also ensures a more even distribution of voltage along the length of the chain of insulator units. Polymer insulators by nature have hydrophobic characteristics providing for improved wet performance. Also, studies have shown that the specific creepage distance required in polymer insulators is much lower than that required in porcelain or glass. Additionally, the mass of polymer insulators (especially in higher voltages) is approximately 50% to 30% less than that of a comparative porcelain or glass string. Better pollution and wet performance is leading to the increased use of such insulators. Insulators for very high voltages, exceeding 200 kV, may have [[grading ring]]s installed at their terminals. This improves the electric field distribution around the insulator and makes it more resistant to flash-over during voltage surges. ==Conductors== [[File:Sample cross-section of high tension power (pylon) line.jpg|thumb|Sample cross-section of ACSR power line]] The most common conductor in use for transmission today is [[Aluminium-conductor steel-reinforced cable|aluminum conductor steel reinforced]] (ACSR). Also seeing much use is [[all-aluminum-alloy conductor]] (AAAC). Aluminum is used because it has about half the weight of a comparable resistance copper cable (though larger diameter due to lower [[specific conductivity]]), as well as being cheaper.<ref name=Fink78/> Copper was more popular in the past and is still in use, especially at lower voltages and for grounding. While larger conductors lose less energy due to lower [[electrical resistance]], they are more costly than smaller conductors. An optimization rule called ''[[Lord Kelvin|Kelvin's Law]]'' states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex by additional factors such as varying annual load, varying cost of installation, and the discrete sizes of cable that are commonly made.<ref name=Fink78/><ref>{{cite web |title=Economic Choice Of Conductor Size - Kelvin's Law |url=https://www.electricaleasy.com/2016/05/economic-choice-of-conductor-size-kelvins-law.html}}</ref> Since a conductor is a flexible object with uniform weight per unit length, the shape of a conductor strung between two towers approximates that of a [[catenary]]. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature and additional load such as ice cover. A minimum overhead clearance must be maintained for safety. Since the temperature and therefore length of the conductor increase with increasing current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower [[coefficient of thermal expansion]] or a higher allowable [[operating temperature]]. [[File:ACSR and ACCC.JPG|thumb|Conventional ACSR (left) and modern carbon core (right) conductors]] Two such conductors that offer reduced thermal sag are known as composite core conductors (ACCR and [[ACCC conductor]]). In lieu of steel core strands that are often used to increase overall conductor strength, the ACCC conductor uses a carbon and glass fiber core that offers a coefficient of thermal expansion about 1/10 of that of steel. While the composite core is nonconductive, it is substantially lighter and stronger than steel, which allows the incorporation of 28% more aluminum (using compact trapezoidal-shaped strands) without any diameter or weight penalty. The added aluminum content helps reduce line losses by 25 to 40% compared to other conductors of the same diameter and weight, depending upon electric current. The carbon core conductor's reduced thermal sag allows it to carry up to twice the current ("ampacity") compared to all-aluminum conductor (AAC) or ACSR. The power lines and their surroundings must be [[Live-line working|maintained]] by [[Lineman (technician)|linemen]], sometimes assisted by [[helicopter]]s with [[pressure washer]]s or [[circular saw]]s which may work three times faster. However this work often occurs in the dangerous areas of the [[Helicopter height–velocity diagram]],<ref name=vert2015-04>{{cite news |first=Elan |last=Head |url=http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html |title=High-value cargo |pages=80–90 |work=Vertical Magazine |date=April 2015 |accessdate=11 April 2015 |url-status=dead |archiveurl=https://web.archive.org/web/20150419023320/http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html |archivedate=19 April 2015 }}</ref><ref name=vert2015-04b>{{cite news |first=Guy R. |last=Maher |url=http://www.verticalmag.com/digital_issue/2015/v14i2/files/94.html |title=A cut above |pages=92–98 |work=Vertical Magazine |date=April 2015 |accessdate=11 April 2015|archive-url=https://web.archive.org/web/20150512160639/http://www.verticalmag.com/news/article/ACutAbove |archive-date=12 May 2015 |url-status=live}}</ref><ref>Harnesk, Tommy. "[http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece Helikoptermonterad motorsåg snabbkapar träden] {{Webarchive|url=https://web.archive.org/web/20150112025125/http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece |date=2015-01-12 }}" ''[[Ny Teknik]]'', 9 January 2015. Accessed: 12 January 2015.</ref> and the pilot must be qualified for this "[[Helicopter Flight Rescue System|human external cargo]]" method.<ref>{{Cite web |url=http://www.tdworld.com/electric-utility-operations/wapa-helicopters-saving-time-and-money |title=WAPA Helicopters: Saving Time and Money |last=Weger |first=Travis |date=2017-11-14 |website=TDWorld |access-date=2017-12-07}}</ref> ===Bundle conductors=== [[File:Pylône électrique détail 2011-2.JPG|thumb|A bundle conductor]] For transmission of power across long distances, high voltage transmission is employed. Transmission higher than 132&nbsp;kV poses the problem of [[corona discharge]], which causes significant power loss and interference with communication circuits. To reduce this corona effect, it is preferable to use more than one conductor per phase, or bundled conductors.<ref name="Grainger, John J 1994">Grainger, John J. and W. D. Stevenson Jr. Power System Analysis and Design, 2nd edition. McGraw Hill (1994).</ref> Bundle conductors consist of several parallel cables connected at intervals by spacers, often in a cylindrical configuration. The optimum number of conductors depends on the current rating, but typically higher-voltage lines also have higher current. [[American Electric Power]]<ref>{{Cite news |url=http://tdworld.com/overhead-transmission/six-wire-solution |title=Six Wire Solution] |journal=Transmission & Distribution World |first=Bruce |last=Freimark |date=October 1, 2006 |accessdate=March 6, 2007}}</ref> is building 765&nbsp;kV lines using six conductors per phase in a bundle. Spacers must resist the forces due to wind, and magnetic forces during a short-circuit. [[File:Spacer damper for four-conductor bundles.jpg|thumb|left|upright|Spacer damper for four-conductor bundles]] [[File:Pylône_électrique_détail_2011-4.JPG|thumb|Bundle conductor attachment]] Bundled conductors reduce the voltage gradient in the vicinity of the line. This reduces the possibility of corona discharge. At [[extra high voltage]], the electric field [[gradient]] at the surface of a single conductor is high enough to ionize air, which wastes power, generates unwanted audible noise and [[Electromagnetic interference|interferes]] with [[communication system]]s. The field surrounding a bundle of conductors is similar to the field that would surround a single, very large conductor—this produces lower gradients which mitigates issues associated with high field strength. The transmission efficiency is improved as loss due to corona effect is countered. Bundled conductors cool themselves more efficiently due to the increased surface area of the conductors, further reducing line losses. When transmitting alternating current, bundle conductors also avoid the reduction in [[ampacity]] of a single large conductor due to the [[skin effect]]. A bundle conductor also has lower [[Reactance (electronics)|reactance]], compared to a single conductor. While wind resistance is higher, wind-induced oscillation can be damped at bundle spacers. The ice and wind loading of bundled conductors will be greater than a single conductor of the same total cross section, and bundled conductors are more difficult to install than single conductors. ===Ground wires=== [[File:Al OC.jpg|thumb|Aluminum conductor crosslinked polyethylene insulation wire. It is used for 6600V power lines.]] Overhead power lines are often equipped with a ground conductor (shield wire, static wire, or overhead earth wire). The ground conductor is usually grounded (earthed) at the top of the supporting structure, to minimize the likelihood of direct lightning strikes to the phase conductors.<ref>{{cite book|title=The Art and Science of Lightning Protection|url=https://books.google.com/books?id=KO7fVcqispQC&pg=PA205}}</ref> In circuits with [[earthed neutral]], it also serves as a parallel path with the earth for fault currents. Very high-voltage transmission lines may have two ground conductors. These are either at the outermost ends of the highest cross beam, at two V-shaped mast points, or at a separate cross arm. Older lines may use [[surge arrester]]s every few spans in place of a shield wire; this configuration is typically found in the more rural areas of the United States. By protecting the line from lightning, the design of apparatus in substations is simplified due to lower stress on insulation. Shield wires on transmission lines may include optical fibers ([[optical ground wire]]s/OPGW), used for communication and control of the power system. [[File:Fenno-Skan HVDC power line.jpg|thumb|HVDC Fenno-Skan with ground wires used as electrode line]] At some HVDC converter stations, the ground wire is used also as the electrode line to connect to a distant grounding electrode. This allows the HVDC system to use the earth as one conductor. The ground conductor is mounted on small insulators bridged by lightning arrestors above the phase conductors. The insulation prevents electrochemical corrosion of the pylon. Medium-voltage distribution lines may also use one or two shield wires, or may have the grounded conductor strung below the phase conductors to provide some measure of protection against tall vehicles or equipment touching the energized line, as well as to provide a neutral line in Wye wired systems. On some power lines for very high voltages in the former Soviet Union, the ground wire is used for [[Power-line communication|PLC]] systems and mounted on insulators at the pylons. ===Insulated conductors and cable=== Overhead insulated cables are rarely used, usually for short distances (less than a kilometer). Insulated cables can be directly fastened to structures without insulating supports. An overhead line with bare conductors insulated by air is typically less costly than a cable with insulated conductors. A more common approach is "covered" line wire. It is treated as bare cable, but often is safer for wildlife, as the insulation on the cables increases the likelihood of a large-wing-span raptor to survive a brush with the lines, and reduces the overall danger of the lines slightly. These types of lines are often seen in the eastern United States and in heavily wooded areas, where tree-line contact is likely. The only pitfall is cost, as insulated wire is often costlier than its bare counterpart. Many utility companies implement covered line wire as jumper material where the wires are often closer to each other on the pole, such as an underground riser/[[pothead]],<!--not [[Cannabis smoking]]--> and on reclosers, cutouts and the like. === Dampers === [[File:Stockbridge_damper_POV.jpg|thumb|A Stockbridge damper]] Because power lines can suffer from [[Aeroelasticity#Flutter|aeroelastic flutter]] driven by wind, [[Stockbridge damper]]s are often attached to the lines to reduce the vibrations. ==Compact transmission lines== {{refimprove section|date=March 2012}} A compact overhead transmission line requires a smaller right of way than a standard overhead powerline. Conductors must not get too close to each other. This can be achieved either by short span lengths and insulating crossbars, or by separating the conductors in the span with insulators. The first type is easier to build as it does not require insulators in the span, which may be difficult to install and to maintain. Examples of compact lines are: * Lutsk compact overhead powerline {{coord|50.774673|N|25.385215|E|type:landmark|name=Startpoint of Lutsk Compact Overhead Powerline}} * Hilpertsau-Weisenbach compact overhead line {{coord|48.737898|N|8.355660|E|type:landmark|name=Startpoint of Hilpertsau-Weisenbach Powerline}} Compact transmission lines may be designed for voltage upgrade of existing lines to increase the power that can be transmitted on an existing right of way.<ref>Beaty, H. Wayne; Fink, Donald G. , ''Standard Handbook for Electrical Engineers (15th Edition)'' McGraw-Hill, 2007 978-0-07-144146-9 pages 14-105 through 14-106</ref> ==Low voltage== [[File:ABC TQ3157 064.JPG|thumb|Aerial bundled cable in [[Old Coulsdon]], [[Surrey]]]] Low voltage overhead lines may use either bare conductors carried on glass or ceramic insulators or an [[aerial bundled cable]] system. The number of conductors may be anywhere between two (most likely a phase and neutral) up to as many as six (three phase conductors, separate neutral and earth plus street lighting supplied by a common switch); a common case is four (three phase and neutral, where the neutral might also serve as a protective earthing conductor). ==Train power== {{main|Overhead line}} Overhead lines or overhead wires are used to transmit electrical energy to trams, trolleybuses or trains. Overhead line is designed on the principle of one or more overhead wires situated over rail tracks. Feeder stations at regular intervals along the overhead line supply power from the high-voltage grid. For some cases low-frequency AC is used, and distributed by a special [[traction current]] network. ==Further applications== Overhead lines are also occasionally used to supply transmitting antennas, especially for efficient transmission of long, medium and short waves. For this purpose a staggered array line is often used. Along a staggered array line the conductor cables for the supply of the earth net of the transmitting antenna are attached on the exterior of a ring, while the conductor inside the ring, is fastened to insulators leading to the high-voltage standing feeder of the antenna. ==Use of area under overhead power lines== Use of the area below an overhead line is limited because objects must not come too close to the energized conductors. Overhead lines and structures may shed ice, creating a hazard. Radio reception can be impaired under a power line, due both to shielding of a receiver antenna by the overhead conductors, and by partial discharge at insulators and sharp points of the conductors which creates radio noise. In the area surrounding the overhead lines it is dangerous to risk interference; e.g. flying kites or balloons, using ladders or operating machinery. Overhead distribution and transmission lines near [[airfield]]s are often marked on maps, and the lines themselves marked with conspicuous plastic reflectors, to warn pilots of the presence of conductors. Construction of overhead power lines, especially in wilderness areas, may have significant environmental effects. Environmental studies for such projects may consider the effect of bush clearing, changed migration routes for migratory animals, possible access by predators and humans along transmission corridors, disturbances of fish habitat at stream crossings, and other effects. ==Aviation accidents == [[File:High voltage transmission line aviation obstruction marker.jpg|thumb|An aviation obstruction marker on a high-voltage overhead transmission line reminds pilots of the presence of an overhead line. Some markers are lit at night or have strobe lights.]] General aviation, hang gliding, paragliding, skydiving, balloon, and kite flying must avoid accidental contact with power lines. Nearly every kite product warns users to stay away from power lines. Deaths occur when aircraft crash into power lines. Some power lines are marked with obstruction markers, especially near air strips or over waterways that may support floatplane operations. The placement of power lines sometimes use up sites that would otherwise be used by hang gliders.<ref>[http://retasite.wordpress.com/2014/09/10/aircraft-accidents-due-to-overhead-power-lines-updated/ Aircraft Accidents Due to Overhead Power Lines]</ref><ref>{{Cite web |url=http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973 |title=Pacific Gas and Electric Company Reminds Customers About Flying Kites Safely. |access-date=2014-10-20 |archive-date=2014-10-20 |archive-url=https://archive.today/20141020164701/http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973 |url-status=dead }}</ref> ==History== The first transmission of electrical impulses over an extended distance was demonstrated on July 14, 1729 by the physicist [[Stephen Gray (scientist)|Stephen Gray]].{{Citation needed|date=May 2014}} The demonstration used damp hemp cords suspended by silk threads (the low resistance of metallic conductors not being appreciated at the time). However the first practical use of overhead lines was in the context of [[electrical telegraph|telegraphy]]. By 1837 experimental commercial telegraph systems ran as far as 20&nbsp;km (13 miles). Electric power transmission was accomplished in 1882 with the first high-voltage transmission between [[Miesbach–Munich Power Transmission|Munich and Miesbach]] (60&nbsp;km). 1891 saw the construction of the first three-phase [[alternating current]] overhead line on the occasion of the International Electricity Exhibition in [[Frankfurt]], between [[Lauffen]] and Frankfurt. In 1912 the first 110 kV-overhead power line entered service followed by the first 220 kV-overhead power line in 1923. In the 1920s [[RWE]] AG built the first overhead line for this voltage and in 1926 built a [[Rhine]] crossing with the pylons of [[Voerde]], two masts 138 meters high. <!-- Milestones of years and voltages table here --> In 1953, the first 345 kV line was put into service by [[American Electric Power]] in the [[United States]]. In Germany in 1957 the first 380 kV overhead power line was commissioned (between the transformer station and Rommerskirchen). In the same year the overhead line traversing of the Strait of Messina went into service in Italy, whose [[Pylons of Messina|pylons]] served the Elbe crossing 1. This was used as the model for the building of the Elbe crossing 2 in the second half of the 1970s which saw the construction of the highest overhead line pylons of the world. Earlier, in 1952, the first 380 kV line was put into service in [[Sweden]], in 1000&nbsp;km (625 miles) between the more populated areas in the south and the largest hydroelectric power stations in the north. Starting from 1967 in Russia, and also in the USA and Canada, overhead lines for voltage of 765 kV were built. In 1982 overhead power lines were built in Soviet Union between [[Elektrostal]] and the power station at [[Ekibastuz]], this was a three-phase alternating current line at 1150 kV ([[Powerline Ekibastuz-Kokshetau]]). In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the [[Kita-Iwaki Powerline]]. In 2003 the building of the highest overhead line commenced in China, the [[Yangtze River Crossing]]. ==Mathematical analysis== An overhead power line is one example of a [[transmission line]]. At power system frequencies, many useful simplifications can be made for lines of typical lengths. For analysis of power systems, the distributed resistance, series inductance, shunt leakage resistance and shunt capacitance can be replaced with suitable lumped values or simplified networks. ===Short and medium line model=== A short length of a power line (less than 80&nbsp;km) can be approximated with a resistance in series with an inductance and ignoring the shunt admittances. This value is not the total impedance of the line, but rather the series impedance per unit length of line. For a longer length of line (80–250&nbsp;km), a shunt capacitance is added to the model. In this case it is common to distribute half of the total capacitance to each side of the line. As a result, the power line can be represented as a [[two-port network]], such as with ABCD parameters.<ref name=Glover21>J. Glover, M. Sarma, and T. Overbye, ''Power System Analysis and Design, Fifth Edition'', Cengage Learning, Connecticut, 2012, {{ISBN|978-1-111-42577-7}}, Chapter 5 ''Transmission Lines: Steady-State Operation''</ref> The circuit can be characterized as :<math>Z = z l = (R + j \omega L)l </math> where *''Z'' is the total series line [[Electrical impedance|impedance]] *''z'' is the series impedance per unit length *''l'' is the line length *<math>\omega \ </math> is the [[sinusoidal]] [[angular frequency]] The medium line has an additional shunt [[admittance]] :<math>Y = y l = j \omega C l </math> where *''Y'' is the total shunt line admittance *''y'' is the shunt admittance per unit length <gallery widths="230px" heights="100px" perrow="2"> File:Short Line Approximation.png|Short length of power line File:Med Line Approximation.png|Medium length of power line </gallery> == See also == * [[Aerial cable]] * [[Conductor marking lights]] * [[CU project controversy]] * [[Overhead cable]] * [[Overhead line]] * [[Raptor conservation]] * [[Third rail]] * [[Operation Outward]] * [[Powerline river crossings in the United Kingdom]] * [[Wireless powerline sensor|Wireless monitoring of overhead power lines]] ==References== {{Reflist|30em}} ==Further reading== {{refbegin}} * William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', McGraw-Hill, New York (1975) {{ISBN|0-07-061285-4}} == External links == * {{Commons-inline|Overhead power lines}} {{refend}} {{Electricity delivery}} {{DEFAULTSORT:Overhead power line}} [[Category:Overhead power lines| ]] [[Category:Electric power distribution]]'
Unified diff of changes made by edit ($1) (edit_diff)
'@@ -8,5 +8,5 @@ ==Construction== -[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A man working on powerlines in [[Nauru]] (2007)]] +[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A n¡gger working on powerlines in [[Nauru]] (2007)]] Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or [[ACSR|reinforced with steel]], or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<ref name="Fink78">[[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, {{ISBN|0-07-020974-X}}, Chapter 14 ''Overhead Power Transmission''</ref> Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases. '
New page size ($1) (new_size)
36397
Old page size ($1) (old_size)
36393
Size change in edit ($1) (edit_delta)
4
Lines added in edit ($1) (added_lines)
[ 0 => '[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A n¡gger working on powerlines in [[Nauru]] (2007)]]' ]
Lines removed in edit ($1) (removed_lines)
[ 0 => '[[File:NAURU JULY 2007 (10709113444).jpg|thumb|A man working on powerlines in [[Nauru]] (2007)]]' ]
Parsed HTML source of the new revision ($1) (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Above-ground structure for bulk transfer and distribution of electricity</div> <style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">This article is about power lines for general transmission of electrical power. For overhead lines used to power road and rail vehicles, see <a href="/wiki/Overhead_line" title="Overhead line">Overhead line</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">"Power line" redirects here. For other uses, see <a href="/wiki/Power_line_(disambiguation)" class="mw-redirect mw-disambig" title="Power line (disambiguation)">Power line (disambiguation)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1097763485">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}</style><table class="box-More_footnotes plainlinks metadata ambox ambox-style ambox-More_footnotes" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/40px-Text_document_with_red_question_mark.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/60px-Text_document_with_red_question_mark.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Text_document_with_red_question_mark.svg/80px-Text_document_with_red_question_mark.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article includes a list of general <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">references</a>, but <b>it lacks sufficient corresponding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a></b>.<span class="hide-when-compact"> Please help to <a href="/wiki/Wikipedia:WikiProject_Reliability" title="Wikipedia:WikiProject Reliability">improve</a> this article by <a href="/wiki/Wikipedia:When_to_cite" title="Wikipedia:When to cite">introducing</a> more precise citations.</span> <span class="date-container"><i>(<span class="date">August 2010</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this template message</a></small>)</i></span></div></td></tr></tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Pylon_ds.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Pylon_ds.jpg/172px-Pylon_ds.jpg" decoding="async" width="172" height="349" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Pylon_ds.jpg/258px-Pylon_ds.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/Pylon_ds.jpg/344px-Pylon_ds.jpg 2x" data-file-width="1120" data-file-height="2270" /></a><figcaption>Overhead power line in <a href="/wiki/Gloucestershire" title="Gloucestershire">Gloucestershire</a>, <a href="/wiki/England" title="England">England</a>.</figcaption></figure> <p>An <b>overhead power line</b> is a structure used in <a href="/wiki/Electric_power_transmission" title="Electric power transmission">electric power transmission</a> and <a href="/wiki/Electric_power_distribution" title="Electric power distribution">distribution</a> to transmit electrical energy along large distances. It consists of one or more <a href="/wiki/Electrical_conductor" title="Electrical conductor">conductors</a> (commonly multiples of three) suspended by <a href="/wiki/Transmission_tower" title="Transmission tower">towers</a> or <a href="/wiki/Utility_pole" title="Utility pole">poles</a>. Since most of the <a href="/wiki/Electrical_insulation" class="mw-redirect" title="Electrical insulation">insulation</a> is provided by air, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Construction"><span class="tocnumber">1</span> <span class="toctext">Construction</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Classification_by_operating_voltage"><span class="tocnumber">2</span> <span class="toctext">Classification by operating voltage</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Structures"><span class="tocnumber">3</span> <span class="toctext">Structures</span></a> <ul> <li class="toclevel-2 tocsection-4"><a href="#Circuits"><span class="tocnumber">3.1</span> <span class="toctext">Circuits</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#Insulators"><span class="tocnumber">4</span> <span class="toctext">Insulators</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Conductors"><span class="tocnumber">5</span> <span class="toctext">Conductors</span></a> <ul> <li class="toclevel-2 tocsection-7"><a href="#Bundle_conductors"><span class="tocnumber">5.1</span> <span class="toctext">Bundle conductors</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Ground_wires"><span class="tocnumber">5.2</span> <span class="toctext">Ground wires</span></a></li> <li class="toclevel-2 tocsection-9"><a href="#Insulated_conductors_and_cable"><span class="tocnumber">5.3</span> <span class="toctext">Insulated conductors and cable</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Dampers"><span class="tocnumber">5.4</span> <span class="toctext">Dampers</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-11"><a href="#Compact_transmission_lines"><span class="tocnumber">6</span> <span class="toctext">Compact transmission lines</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#Low_voltage"><span class="tocnumber">7</span> <span class="toctext">Low voltage</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#Train_power"><span class="tocnumber">8</span> <span class="toctext">Train power</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#Further_applications"><span class="tocnumber">9</span> <span class="toctext">Further applications</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#Use_of_area_under_overhead_power_lines"><span class="tocnumber">10</span> <span class="toctext">Use of area under overhead power lines</span></a></li> <li class="toclevel-1 tocsection-16"><a href="#Aviation_accidents"><span class="tocnumber">11</span> <span class="toctext">Aviation accidents</span></a></li> <li class="toclevel-1 tocsection-17"><a href="#History"><span class="tocnumber">12</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-18"><a href="#Mathematical_analysis"><span class="tocnumber">13</span> <span class="toctext">Mathematical analysis</span></a> <ul> <li class="toclevel-2 tocsection-19"><a href="#Short_and_medium_line_model"><span class="tocnumber">13.1</span> <span class="toctext">Short and medium line model</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-20"><a href="#See_also"><span class="tocnumber">14</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-21"><a href="#References"><span class="tocnumber">15</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-22"><a href="#Further_reading"><span class="tocnumber">16</span> <span class="toctext">Further reading</span></a></li> <li class="toclevel-1 tocsection-23"><a href="#External_links"><span class="tocnumber">17</span> <span class="toctext">External links</span></a></li> </ul> </div> <h2><span class="mw-headline" id="Construction">Construction</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=1" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NAURU_JULY_2007_(10709113444).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/NAURU_JULY_2007_%2810709113444%29.jpg/220px-NAURU_JULY_2007_%2810709113444%29.jpg" decoding="async" width="220" height="331" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/NAURU_JULY_2007_%2810709113444%29.jpg/330px-NAURU_JULY_2007_%2810709113444%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/NAURU_JULY_2007_%2810709113444%29.jpg/440px-NAURU_JULY_2007_%2810709113444%29.jpg 2x" data-file-width="712" data-file-height="1072" /></a><figcaption>A n¡gger working on powerlines in <a href="/wiki/Nauru" title="Nauru">Nauru</a> (2007)</figcaption></figure> <p>Towers for support of the lines are made of wood (as-grown or laminated), steel or aluminum (either lattice structures or tubular poles), concrete, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminum (either plain or <a href="/wiki/ACSR" class="mw-redirect" title="ACSR">reinforced with steel</a>, or composite materials such as carbon and glass fiber), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line, and to provide reliable support for the conductors, resilience to storms, ice loads, earthquakes and other potential damage causes.<sup id="cite_ref-Fink78_1-0" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases. </p> <h2><span class="mw-headline" id="Classification_by_operating_voltage">Classification by operating voltage</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=2" title="Edit section: Classification by operating voltage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure typeof="mw:File/Thumb"><a href="/wiki/File:%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg/173px-%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg" decoding="async" width="173" height="231" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg/260px-%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg/346px-%C5%81om%C5%BCa_linia_elektroenergetyczna_napowietrzna.jpg 2x" data-file-width="768" data-file-height="1024" /></a><figcaption>High- and medium-voltage power lines in <a href="/wiki/%C5%81om%C5%BCa" title="Łomża">Łomża</a>, Poland</figcaption></figure> <p>Overhead power transmission lines are classified in the electrical power industry by the range of voltages: </p> <ul><li>Low voltage (LV) – less than 1000 volts, used for connection between a residential or small commercial customer and the utility.</li> <li>Medium voltage (MV; distribution) – between 1000 volts (1 kV) and 69 kV, used for distribution in urban and rural areas.</li> <li>High voltage (HV; <a href="/wiki/Subtransmission" class="mw-redirect" title="Subtransmission">subtransmission</a> less than 100&#160;kV; subtransmission or transmission at voltages such as 115&#160;kV and 138&#160;kV), used for sub-transmission and transmission of bulk quantities of electric power and connection to very large consumers.</li> <li>Extra high voltage (EHV; transmission) – from 345 kV, up to about 800 kV,<sup id="cite_ref-TGonen_2-0" class="reference"><a href="#cite_note-TGonen-2">&#91;2&#93;</a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (June 2018)">page&#160;needed</span></a></i>&#93;</sup> used for long distance, very high power transmission.</li> <li>Ultra high voltage (UHV) – higher than 800 kV. The <i><a href="/wiki/Financial_Times" title="Financial Times">Financial Times</a></i> reported UHV lines are a "game changer", making a global electricity grid potentially feasible. <a href="/wiki/State_Grid_Corporation_of_China" title="State Grid Corporation of China">StateGrid</a> said that compared to conventional lines, UHV enables the transmission of five times more power, over six times the distance.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3">&#91;3&#93;</a></sup></li></ul> <h2><span class="mw-headline" id="Structures">Structures</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=3" title="Edit section: Structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Transmission_tower" title="Transmission tower">Transmission tower</a></div> <p>Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood <a href="/wiki/Utility_pole" title="Utility pole">poles</a> directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type <a href="/wiki/Electricity_pylon" class="mw-redirect" title="Electricity pylon">steel towers</a> or pylons. For remote areas, aluminum towers may be placed by <a href="/wiki/Helicopter" title="Helicopter">helicopters</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4">&#91;4&#93;</a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5">&#91;5&#93;</a></sup> Concrete poles have also been used.<sup id="cite_ref-Fink78_1-1" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> Poles made of reinforced plastics are also available, but their high cost restricts application. </p><p>Each structure must be designed for the loads imposed on it by the conductors.<sup id="cite_ref-Fink78_1-2" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> The weight of the conductor must be supported, as well as dynamic loads due to wind and ice accumulation, and effects of vibration. Where conductors are in a straight line, towers need only resist the weight since the tension in the conductors approximately balances with no resultant force on the structure. Flexible conductors supported at their ends approximate the form of a <a href="/wiki/Catenary" title="Catenary">catenary</a>, and much of the analysis for construction of transmission lines relies on the properties of this form.<sup id="cite_ref-Fink78_1-3" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> </p><p>A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures.<sup id="cite_ref-Fink78_1-4" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> </p><p>Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Einebenenleitung.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Einebenenleitung.jpg/220px-Einebenenleitung.jpg" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Einebenenleitung.jpg/330px-Einebenenleitung.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Einebenenleitung.jpg/440px-Einebenenleitung.jpg 2x" data-file-width="2400" data-file-height="1152" /></a><figcaption>low-profile power lines near an <a href="/wiki/Airfield" class="mw-redirect" title="Airfield">airfield</a></figcaption></figure> <p>Power lines and supporting structures can be a form of <a href="/wiki/Visual_pollution" title="Visual pollution">visual pollution</a>. In some cases the lines are buried to avoid this, but this "<a href="/wiki/Undergrounding" title="Undergrounding">undergrounding</a>" is more expensive and therefore not common. </p><p>For a single wood <a href="/wiki/Utility_pole" title="Utility pole">utility pole</a> structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. <a href="/wiki/Lattice_tower" title="Lattice tower">Lattice tower</a> structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The <a href="/wiki/Strain_insulator" title="Strain insulator">strain insulators</a> are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed. </p><p>A grounded wire is sometimes strung along the tops of the towers to provide lightning protection. An <a href="/wiki/Optical_ground_wire" title="Optical ground wire">optical ground wire</a> is a more advanced version with embedded <a href="/wiki/Optical_fiber" title="Optical fiber">optical fibers</a> for communication. <a href="/wiki/Overhead_wire_marker" title="Overhead wire marker">Overhead wire markers</a> can be mounted on the ground wire to meet <a href="/wiki/International_Civil_Aviation_Organization" title="International Civil Aviation Organization">International Civil Aviation Organization</a> recommendations.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6">&#91;6&#93;</a></sup> Some markers include <a href="/wiki/Balisor" title="Balisor">flashing lamps</a> for night-time warning. </p> <h3><span class="mw-headline" id="Circuits">Circuits</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=4" title="Edit section: Circuits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <p>A <i>single-circuit transmission line</i> carries conductors for only one circuit. For a <a href="/wiki/Three-phase_electric_power" title="Three-phase electric power">three-phase</a> system, this implies that each tower supports three conductors. </p><p>A <i>double-circuit transmission line</i> has two circuits. For three-phase systems, each tower supports and insulates six conductors. Single phase AC-power lines as used for <a href="/wiki/Railway_electrification_system" class="mw-redirect" title="Railway electrification system">traction current</a> have four conductors for two circuits. Usually both circuits operate at the same voltage. </p><p>In HVDC systems typically two conductors are carried per line, but in rare cases only one pole of the system is carried on a set of towers. </p><p>In some countries like Germany most power lines with voltages above 100 kV are implemented as double, quadruple or in rare cases even hextuple power line as <a href="/wiki/Rights_of_way" class="mw-redirect" title="Rights of way">rights of way</a> are rare. Sometimes all conductors are installed with the erection of the pylons; often some circuits are installed later. A disadvantage of double circuit transmission lines is that maintenance can be difficult, as either work in close proximity of high voltage or switch-off of two circuits is required. In case of failure, both systems can be affected. </p><p>The largest double-circuit transmission line is the <a href="/wiki/Kita-Iwaki_Powerline" class="mw-redirect" title="Kita-Iwaki Powerline">Kita-Iwaki Powerline</a>. </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Single_circuit_overhead_power_line_with_distribution_lines.png" class="mw-file-description" title="A single-circuit 138 kV line (top) with distribution wires (bottom)"><img alt="A single-circuit 138 kV line (top) with distribution wires (bottom)" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Single_circuit_overhead_power_line_with_distribution_lines.png/174px-Single_circuit_overhead_power_line_with_distribution_lines.png" decoding="async" width="174" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Single_circuit_overhead_power_line_with_distribution_lines.png/262px-Single_circuit_overhead_power_line_with_distribution_lines.png 1.5x, //upload.wikimedia.org/wikipedia/commons/8/8f/Single_circuit_overhead_power_line_with_distribution_lines.png 2x" data-file-width="334" data-file-height="440" /></a></span></div> <div class="gallerytext"> <p>A single-circuit 138 kV line (top) with distribution wires (bottom) </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Electric_Sails.jpg" class="mw-file-description" title="A double-circuit line"><img alt="A double-circuit line" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Electric_Sails.jpg/172px-Electric_Sails.jpg" decoding="async" width="172" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Electric_Sails.jpg/259px-Electric_Sails.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Electric_Sails.jpg/345px-Electric_Sails.jpg 2x" data-file-width="1920" data-file-height="2560" /></a></span></div> <div class="gallerytext"> <p>A double-circuit line </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Img0289SCE_500kV_lines_close.JPG" class="mw-file-description" title="Parallel single-circuit lines"><img alt="Parallel single-circuit lines" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Img0289SCE_500kV_lines_close.JPG/230px-Img0289SCE_500kV_lines_close.JPG" decoding="async" width="230" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Img0289SCE_500kV_lines_close.JPG/345px-Img0289SCE_500kV_lines_close.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Img0289SCE_500kV_lines_close.JPG/460px-Img0289SCE_500kV_lines_close.JPG 2x" data-file-width="2048" data-file-height="1536" /></a></span></div> <div class="gallerytext"> <p>Parallel single-circuit lines </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Hamilton_Beach_Pylon_(2).JPG" class="mw-file-description" title="Four circuits on one tower line"><img alt="Four circuits on one tower line" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hamilton_Beach_Pylon_%282%29.JPG/172px-Hamilton_Beach_Pylon_%282%29.JPG" decoding="async" width="172" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hamilton_Beach_Pylon_%282%29.JPG/259px-Hamilton_Beach_Pylon_%282%29.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hamilton_Beach_Pylon_%282%29.JPG/345px-Hamilton_Beach_Pylon_%282%29.JPG 2x" data-file-width="2736" data-file-height="3648" /></a></span></div> <div class="gallerytext"> <p>Four circuits on one tower line </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Wernau_Double_Pylon1.JPG" class="mw-file-description" title="six circuits of three different types"><img alt="six circuits of three different types" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Wernau_Double_Pylon1.JPG/129px-Wernau_Double_Pylon1.JPG" decoding="async" width="129" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Wernau_Double_Pylon1.JPG/194px-Wernau_Double_Pylon1.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Wernau_Double_Pylon1.JPG/259px-Wernau_Double_Pylon1.JPG 2x" data-file-width="864" data-file-height="1536" /></a></span></div> <div class="gallerytext"> <p>six circuits of three different types </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 260px;"><span typeof="mw:File"><a href="/wiki/File:Stromtrasse_bei_Mannheim-Seckenheim.jpg" class="mw-file-description" title="Various powerlines (110/220 kV) in Germany with double and quadruple circuits"><img alt="Various powerlines (110/220 kV) in Germany with double and quadruple circuits" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Stromtrasse_bei_Mannheim-Seckenheim.jpg/230px-Stromtrasse_bei_Mannheim-Seckenheim.jpg" decoding="async" width="230" height="153" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Stromtrasse_bei_Mannheim-Seckenheim.jpg/345px-Stromtrasse_bei_Mannheim-Seckenheim.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/Stromtrasse_bei_Mannheim-Seckenheim.jpg/460px-Stromtrasse_bei_Mannheim-Seckenheim.jpg 2x" data-file-width="4500" data-file-height="3000" /></a></span></div> <div class="gallerytext"> <p>Various powerlines (110/220 kV) in Germany with double and quadruple circuits </p> </div> </li> </ul> <h2><span class="mw-headline" id="Insulators">Insulators</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=5" title="Edit section: Insulators"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Power_line_with_ceramic_insulators.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Power_line_with_ceramic_insulators.jpg/220px-Power_line_with_ceramic_insulators.jpg" decoding="async" width="220" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Power_line_with_ceramic_insulators.jpg/330px-Power_line_with_ceramic_insulators.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Power_line_with_ceramic_insulators.jpg/440px-Power_line_with_ceramic_insulators.jpg 2x" data-file-width="2896" data-file-height="2465" /></a><figcaption>Medium-voltage power lines with ceramic insulators in California</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pylon.detail.arp.750pix.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Pylon.detail.arp.750pix.jpg/220px-Pylon.detail.arp.750pix.jpg" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Pylon.detail.arp.750pix.jpg/330px-Pylon.detail.arp.750pix.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Pylon.detail.arp.750pix.jpg/440px-Pylon.detail.arp.750pix.jpg 2x" data-file-width="750" data-file-height="536" /></a><figcaption>Modular suspension insulators are used for high-voltage lines.</figcaption></figure> <p><a href="/wiki/Electrical_insulation#High-voltage_insulators" class="mw-redirect" title="Electrical insulation">Insulators</a> must support the conductors and withstand both the normal operating voltage and surges due to switching and <a href="/wiki/Lightning" title="Lightning">lightning</a>. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. The invention of the <a href="/wiki/Strain_insulator" title="Strain insulator">strain insulator</a> was a critical factor in allowing higher voltages to be used. </p><p>At the end of the 19th century, the limited electrical strength of <a href="/wiki/Telegraph" class="mw-redirect" title="Telegraph">telegraph</a>-style <a href="/wiki/Pin_insulator" title="Pin insulator">pin insulators</a> limited the voltage to no more than 69,000 <a href="/wiki/Volt" title="Volt">volts</a>. Up to about 33 kV (69 kV in North America) both types are commonly used.<sup id="cite_ref-Fink78_1-5" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> At higher voltages only suspension-type insulators are common for overhead conductors. </p><p>Insulators are usually made of wet-process <a href="/wiki/Porcelain" title="Porcelain">porcelain</a> or <a href="/wiki/Toughened_glass" class="mw-redirect" title="Toughened glass">toughened glass</a>, with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels, polymer insulators (<a href="/wiki/Silicone_rubber" title="Silicone rubber">silicone rubber</a> based) are seeing increasing usage.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7">&#91;7&#93;</a></sup> China has already developed polymer insulators having a highest system voltage of 1100 kV and India is currently developing a 1200 kV (highest system voltage) line which will initially be charged with 400 kV to be upgraded to a 1200 kV line.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8">&#91;8&#93;</a></sup> </p><p>Suspension insulators are made of multiple units, with the number of unit insulator disks increasing at higher voltages. The number of disks is chosen based on line voltage, lightning withstand requirement, altitude, and environmental factors such as fog, pollution, or salt spray. In cases where these conditions are suboptimal, longer insulators must be used. Longer insulators with longer creepage distance for leakage current, are required in these cases. Strain insulators must be strong enough mechanically to support the full weight of the span of conductor, as well as loads due to ice accumulation, and wind.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9">&#91;9&#93;</a></sup> </p><p>Porcelain insulators may have a semi-conductive glaze finish, so that a small current (a few milliamperes) passes through the insulator. This warms the surface slightly and reduces the effect of fog and dirt accumulation. The semiconducting glaze also ensures a more even distribution of voltage along the length of the chain of insulator units. </p><p>Polymer insulators by nature have hydrophobic characteristics providing for improved wet performance. Also, studies have shown that the specific creepage distance required in polymer insulators is much lower than that required in porcelain or glass. Additionally, the mass of polymer insulators (especially in higher voltages) is approximately 50% to 30% less than that of a comparative porcelain or glass string. Better pollution and wet performance is leading to the increased use of such insulators. </p><p>Insulators for very high voltages, exceeding 200 kV, may have <a href="/wiki/Grading_ring" class="mw-redirect" title="Grading ring">grading rings</a> installed at their terminals. This improves the electric field distribution around the insulator and makes it more resistant to flash-over during voltage surges. </p> <h2><span class="mw-headline" id="Conductors">Conductors</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=6" title="Edit section: Conductors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sample_cross-section_of_high_tension_power_(pylon)_line.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg/220px-Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg" decoding="async" width="220" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg/330px-Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg/440px-Sample_cross-section_of_high_tension_power_%28pylon%29_line.jpg 2x" data-file-width="1440" data-file-height="1636" /></a><figcaption>Sample cross-section of ACSR power line</figcaption></figure> <p>The most common conductor in use for transmission today is <a href="/wiki/Aluminium-conductor_steel-reinforced_cable" title="Aluminium-conductor steel-reinforced cable">aluminum conductor steel reinforced</a> (ACSR). Also seeing much use is <a href="/w/index.php?title=All-aluminum-alloy_conductor&amp;action=edit&amp;redlink=1" class="new" title="All-aluminum-alloy conductor (page does not exist)">all-aluminum-alloy conductor</a> (AAAC). Aluminum is used because it has about half the weight of a comparable resistance copper cable (though larger diameter due to lower <a href="/wiki/Specific_conductivity" class="mw-redirect" title="Specific conductivity">specific conductivity</a>), as well as being cheaper.<sup id="cite_ref-Fink78_1-6" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup> Copper was more popular in the past and is still in use, especially at lower voltages and for grounding. </p><p>While larger conductors lose less energy due to lower <a href="/wiki/Electrical_resistance" class="mw-redirect" title="Electrical resistance">electrical resistance</a>, they are more costly than smaller conductors. An optimization rule called <i><a href="/wiki/Lord_Kelvin" title="Lord Kelvin">Kelvin's Law</a></i> states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex by additional factors such as varying annual load, varying cost of installation, and the discrete sizes of cable that are commonly made.<sup id="cite_ref-Fink78_1-7" class="reference"><a href="#cite_note-Fink78-1">&#91;1&#93;</a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10">&#91;10&#93;</a></sup> </p><p>Since a conductor is a flexible object with uniform weight per unit length, the shape of a conductor strung between two towers approximates that of a <a href="/wiki/Catenary" title="Catenary">catenary</a>. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature and additional load such as ice cover. A minimum overhead clearance must be maintained for safety. Since the temperature and therefore length of the conductor increase with increasing current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower <a href="/wiki/Coefficient_of_thermal_expansion" class="mw-redirect" title="Coefficient of thermal expansion">coefficient of thermal expansion</a> or a higher allowable <a href="/wiki/Operating_temperature" title="Operating temperature">operating temperature</a>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ACSR_and_ACCC.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/ACSR_and_ACCC.JPG/220px-ACSR_and_ACCC.JPG" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/ACSR_and_ACCC.JPG/330px-ACSR_and_ACCC.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/ACSR_and_ACCC.JPG/440px-ACSR_and_ACCC.JPG 2x" data-file-width="3200" data-file-height="2560" /></a><figcaption>Conventional ACSR (left) and modern carbon core (right) conductors</figcaption></figure> <p>Two such conductors that offer reduced thermal sag are known as composite core conductors (ACCR and <a href="/wiki/ACCC_conductor" title="ACCC conductor">ACCC conductor</a>). In lieu of steel core strands that are often used to increase overall conductor strength, the ACCC conductor uses a carbon and glass fiber core that offers a coefficient of thermal expansion about 1/10 of that of steel. While the composite core is nonconductive, it is substantially lighter and stronger than steel, which allows the incorporation of 28% more aluminum (using compact trapezoidal-shaped strands) without any diameter or weight penalty. The added aluminum content helps reduce line losses by 25 to 40% compared to other conductors of the same diameter and weight, depending upon electric current. The carbon core conductor's reduced thermal sag allows it to carry up to twice the current ("ampacity") compared to all-aluminum conductor (AAC) or ACSR. </p><p>The power lines and their surroundings must be <a href="/wiki/Live-line_working" title="Live-line working">maintained</a> by <a href="/wiki/Lineman_(technician)" class="mw-redirect" title="Lineman (technician)">linemen</a>, sometimes assisted by <a href="/wiki/Helicopter" title="Helicopter">helicopters</a> with <a href="/wiki/Pressure_washer" class="mw-redirect" title="Pressure washer">pressure washers</a> or <a href="/wiki/Circular_saw" title="Circular saw">circular saws</a> which may work three times faster. However this work often occurs in the dangerous areas of the <a href="/wiki/Helicopter_height%E2%80%93velocity_diagram" title="Helicopter height–velocity diagram">Helicopter height–velocity diagram</a>,<sup id="cite_ref-vert2015-04_11-0" class="reference"><a href="#cite_note-vert2015-04-11">&#91;11&#93;</a></sup><sup id="cite_ref-vert2015-04b_12-0" class="reference"><a href="#cite_note-vert2015-04b-12">&#91;12&#93;</a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13">&#91;13&#93;</a></sup> and the pilot must be qualified for this "<a href="/wiki/Helicopter_Flight_Rescue_System" class="mw-redirect" title="Helicopter Flight Rescue System">human external cargo</a>" method.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14">&#91;14&#93;</a></sup> </p> <h3><span class="mw-headline" id="Bundle_conductors">Bundle conductors</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=7" title="Edit section: Bundle conductors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG/220px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG/330px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG/440px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-2.JPG 2x" data-file-width="4928" data-file-height="3264" /></a><figcaption>A bundle conductor</figcaption></figure> <p>For transmission of power across long distances, high voltage transmission is employed. Transmission higher than 132&#160;kV poses the problem of <a href="/wiki/Corona_discharge" title="Corona discharge">corona discharge</a>, which causes significant power loss and interference with communication circuits. To reduce this corona effect, it is preferable to use more than one conductor per phase, or bundled conductors.<sup id="cite_ref-Grainger,_John_J_1994_15-0" class="reference"><a href="#cite_note-Grainger,_John_J_1994-15">&#91;15&#93;</a></sup> </p><p>Bundle conductors consist of several parallel cables connected at intervals by spacers, often in a cylindrical configuration. The optimum number of conductors depends on the current rating, but typically higher-voltage lines also have higher current. <a href="/wiki/American_Electric_Power" title="American Electric Power">American Electric Power</a><sup id="cite_ref-16" class="reference"><a href="#cite_note-16">&#91;16&#93;</a></sup> is building 765&#160;kV lines using six conductors per phase in a bundle. Spacers must resist the forces due to wind, and magnetic forces during a short-circuit. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Spacer_damper_for_four-conductor_bundles.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Spacer_damper_for_four-conductor_bundles.jpg/170px-Spacer_damper_for_four-conductor_bundles.jpg" decoding="async" width="170" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Spacer_damper_for_four-conductor_bundles.jpg/255px-Spacer_damper_for_four-conductor_bundles.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Spacer_damper_for_four-conductor_bundles.jpg/340px-Spacer_damper_for_four-conductor_bundles.jpg 2x" data-file-width="2476" data-file-height="2885" /></a><figcaption>Spacer damper for four-conductor bundles</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG/220px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG/330px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG/440px-Pyl%C3%B4ne_%C3%A9lectrique_d%C3%A9tail_2011-4.JPG 2x" data-file-width="4928" data-file-height="3264" /></a><figcaption>Bundle conductor attachment</figcaption></figure> <p>Bundled conductors reduce the voltage gradient in the vicinity of the line. This reduces the possibility of corona discharge. At <a href="/wiki/Extra_high_voltage" class="mw-redirect" title="Extra high voltage">extra high voltage</a>, the electric field <a href="/wiki/Gradient" title="Gradient">gradient</a> at the surface of a single conductor is high enough to ionize air, which wastes power, generates unwanted audible noise and <a href="/wiki/Electromagnetic_interference" title="Electromagnetic interference">interferes</a> with <a href="/wiki/Communication_system" class="mw-redirect" title="Communication system">communication systems</a>. The field surrounding a bundle of conductors is similar to the field that would surround a single, very large conductor—this produces lower gradients which mitigates issues associated with high field strength. The transmission efficiency is improved as loss due to corona effect is countered. </p><p>Bundled conductors cool themselves more efficiently due to the increased surface area of the conductors, further reducing line losses. When transmitting alternating current, bundle conductors also avoid the reduction in <a href="/wiki/Ampacity" title="Ampacity">ampacity</a> of a single large conductor due to the <a href="/wiki/Skin_effect" title="Skin effect">skin effect</a>. A bundle conductor also has lower <a href="/wiki/Reactance_(electronics)" class="mw-redirect" title="Reactance (electronics)">reactance</a>, compared to a single conductor. </p><p>While wind resistance is higher, wind-induced oscillation can be damped at bundle spacers. The ice and wind loading of bundled conductors will be greater than a single conductor of the same total cross section, and bundled conductors are more difficult to install than single conductors. </p> <h3><span class="mw-headline" id="Ground_wires">Ground wires</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=8" title="Edit section: Ground wires"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Al_OC.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Al_OC.jpg/220px-Al_OC.jpg" decoding="async" width="220" height="111" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Al_OC.jpg/330px-Al_OC.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Al_OC.jpg/440px-Al_OC.jpg 2x" data-file-width="2592" data-file-height="1309" /></a><figcaption>Aluminum conductor crosslinked polyethylene insulation wire. It is used for 6600V power lines.</figcaption></figure> <p>Overhead power lines are often equipped with a ground conductor (shield wire, static wire, or overhead earth wire). The ground conductor is usually grounded (earthed) at the top of the supporting structure, to minimize the likelihood of direct lightning strikes to the phase conductors.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17">&#91;17&#93;</a></sup> In circuits with <a href="/wiki/Earthed_neutral" class="mw-redirect" title="Earthed neutral">earthed neutral</a>, it also serves as a parallel path with the earth for fault currents. Very high-voltage transmission lines may have two ground conductors. These are either at the outermost ends of the highest cross beam, at two V-shaped mast points, or at a separate cross arm. Older lines may use <a href="/wiki/Surge_arrester" class="mw-redirect" title="Surge arrester">surge arresters</a> every few spans in place of a shield wire; this configuration is typically found in the more rural areas of the United States. By protecting the line from lightning, the design of apparatus in substations is simplified due to lower stress on insulation. Shield wires on transmission lines may include optical fibers (<a href="/wiki/Optical_ground_wire" title="Optical ground wire">optical ground wires</a>/OPGW), used for communication and control of the power system. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Fenno-Skan_HVDC_power_line.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Fenno-Skan_HVDC_power_line.jpg/220px-Fenno-Skan_HVDC_power_line.jpg" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Fenno-Skan_HVDC_power_line.jpg/330px-Fenno-Skan_HVDC_power_line.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Fenno-Skan_HVDC_power_line.jpg/440px-Fenno-Skan_HVDC_power_line.jpg 2x" data-file-width="3024" data-file-height="4032" /></a><figcaption>HVDC Fenno-Skan with ground wires used as electrode line</figcaption></figure> <p>At some HVDC converter stations, the ground wire is used also as the electrode line to connect to a distant grounding electrode. This allows the HVDC system to use the earth as one conductor. The ground conductor is mounted on small insulators bridged by lightning arrestors above the phase conductors. The insulation prevents electrochemical corrosion of the pylon. </p><p>Medium-voltage distribution lines may also use one or two shield wires, or may have the grounded conductor strung below the phase conductors to provide some measure of protection against tall vehicles or equipment touching the energized line, as well as to provide a neutral line in Wye wired systems. </p><p>On some power lines for very high voltages in the former Soviet Union, the ground wire is used for <a href="/wiki/Power-line_communication" title="Power-line communication">PLC</a> systems and mounted on insulators at the pylons. </p> <h3><span class="mw-headline" id="Insulated_conductors_and_cable">Insulated conductors and cable</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=9" title="Edit section: Insulated conductors and cable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <p>Overhead insulated cables are rarely used, usually for short distances (less than a kilometer). Insulated cables can be directly fastened to structures without insulating supports. An overhead line with bare conductors insulated by air is typically less costly than a cable with insulated conductors. </p><p>A more common approach is "covered" line wire. It is treated as bare cable, but often is safer for wildlife, as the insulation on the cables increases the likelihood of a large-wing-span raptor to survive a brush with the lines, and reduces the overall danger of the lines slightly. These types of lines are often seen in the eastern United States and in heavily wooded areas, where tree-line contact is likely. The only pitfall is cost, as insulated wire is often costlier than its bare counterpart. Many utility companies implement covered line wire as jumper material where the wires are often closer to each other on the pole, such as an underground riser/<a href="/wiki/Pothead" title="Pothead">pothead</a>, and on reclosers, cutouts and the like. </p> <h3><span class="mw-headline" id="Dampers">Dampers</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=10" title="Edit section: Dampers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Stockbridge_damper_POV.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Stockbridge_damper_POV.jpg/220px-Stockbridge_damper_POV.jpg" decoding="async" width="220" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Stockbridge_damper_POV.jpg/330px-Stockbridge_damper_POV.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Stockbridge_damper_POV.jpg/440px-Stockbridge_damper_POV.jpg 2x" data-file-width="1248" data-file-height="512" /></a><figcaption>A Stockbridge damper</figcaption></figure> <p>Because power lines can suffer from <a href="/wiki/Aeroelasticity#Flutter" title="Aeroelasticity">aeroelastic flutter</a> driven by wind, <a href="/wiki/Stockbridge_damper" title="Stockbridge damper">Stockbridge dampers</a> are often attached to the lines to reduce the vibrations. </p> <h2><span class="mw-headline" id="Compact_transmission_lines">Compact transmission lines</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=11" title="Edit section: Compact transmission lines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1097763485"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Overhead_power_line" title="Special:EditPage/Overhead power line">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2012</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this template message</a></small>)</i></span></div></td></tr></tbody></table> <p>A compact overhead transmission line requires a smaller right of way than a standard overhead powerline. Conductors must not get too close to each other. This can be achieved either by short span lengths and insulating crossbars, or by separating the conductors in the span with insulators. The first type is easier to build as it does not require insulators in the span, which may be difficult to install and to maintain. </p><p>Examples of compact lines are: </p> <ul><li>Lutsk compact overhead powerline <span class="geo-inline"><style data-mw-deduplicate="TemplateStyles:r1156832818">.mw-parser-output .geo-default,.mw-parser-output .geo-dms,.mw-parser-output .geo-dec{display:inline}.mw-parser-output .geo-nondefault,.mw-parser-output .geo-multi-punct,.mw-parser-output .geo-inline-hidden{display:none}.mw-parser-output .longitude,.mw-parser-output .latitude{white-space:nowrap}</style><span class="plainlinks nourlexpansion"><a class="external text" href="https://geohack.toolforge.org/geohack.php?pagename=Overhead_power_line&amp;params=50.774673_N_25.385215_E_type:landmark&amp;title=Startpoint+of+Lutsk+Compact+Overhead+Powerline"><span class="geo-nondefault"><span class="geo-dms" title="Maps, aerial photos, and other data for this location"><span class="latitude">50°46′29″N</span> <span class="longitude">25°23′07″E</span></span></span><span class="geo-multi-punct">&#xfeff; / &#xfeff;</span><span class="geo-default"><span class="vcard"><span class="geo-dec" title="Maps, aerial photos, and other data for this location">50.774673°N 25.385215°E</span><span style="display:none">&#xfeff; / <span class="geo">50.774673; 25.385215</span></span><span style="display:none">&#xfeff; (<span class="fn org">Startpoint of Lutsk Compact Overhead Powerline</span>)</span></span></span></a></span></span></li> <li>Hilpertsau-Weisenbach compact overhead line <span class="geo-inline"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1156832818"><span class="plainlinks nourlexpansion"><a class="external text" href="https://geohack.toolforge.org/geohack.php?pagename=Overhead_power_line&amp;params=48.737898_N_8.355660_E_type:landmark&amp;title=Startpoint+of+Hilpertsau-Weisenbach+Powerline"><span class="geo-nondefault"><span class="geo-dms" title="Maps, aerial photos, and other data for this location"><span class="latitude">48°44′16″N</span> <span class="longitude">8°21′20″E</span></span></span><span class="geo-multi-punct">&#xfeff; / &#xfeff;</span><span class="geo-default"><span class="vcard"><span class="geo-dec" title="Maps, aerial photos, and other data for this location">48.737898°N 8.355660°E</span><span style="display:none">&#xfeff; / <span class="geo">48.737898; 8.355660</span></span><span style="display:none">&#xfeff; (<span class="fn org">Startpoint of Hilpertsau-Weisenbach Powerline</span>)</span></span></span></a></span></span></li></ul> <p>Compact transmission lines may be designed for voltage upgrade of existing lines to increase the power that can be transmitted on an existing right of way.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18">&#91;18&#93;</a></sup> </p> <h2><span class="mw-headline" id="Low_voltage">Low voltage</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=12" title="Edit section: Low voltage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ABC_TQ3157_064.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/ABC_TQ3157_064.JPG/220px-ABC_TQ3157_064.JPG" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/ABC_TQ3157_064.JPG/330px-ABC_TQ3157_064.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/ABC_TQ3157_064.JPG/440px-ABC_TQ3157_064.JPG 2x" data-file-width="1536" data-file-height="2048" /></a><figcaption>Aerial bundled cable in <a href="/wiki/Old_Coulsdon" title="Old Coulsdon">Old Coulsdon</a>, <a href="/wiki/Surrey" title="Surrey">Surrey</a></figcaption></figure> <p>Low voltage overhead lines may use either bare conductors carried on glass or ceramic insulators or an <a href="/wiki/Aerial_bundled_cable" title="Aerial bundled cable">aerial bundled cable</a> system. The number of conductors may be anywhere between two (most likely a phase and neutral) up to as many as six (three phase conductors, separate neutral and earth plus street lighting supplied by a common switch); a common case is four (three phase and neutral, where the neutral might also serve as a protective earthing conductor). </p> <h2><span class="mw-headline" id="Train_power">Train power</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=13" title="Edit section: Train power"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Overhead_line" title="Overhead line">Overhead line</a></div> <p>Overhead lines or overhead wires are used to transmit electrical energy to trams, trolleybuses or trains. Overhead line is designed on the principle of one or more overhead wires situated over rail tracks. Feeder stations at regular intervals along the overhead line supply power from the high-voltage grid. For some cases low-frequency AC is used, and distributed by a special <a href="/wiki/Traction_current" class="mw-redirect" title="Traction current">traction current</a> network. </p> <h2><span class="mw-headline" id="Further_applications">Further applications</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=14" title="Edit section: Further applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>Overhead lines are also occasionally used to supply transmitting antennas, especially for efficient transmission of long, medium and short waves. For this purpose a staggered array line is often used. Along a staggered array line the conductor cables for the supply of the earth net of the transmitting antenna are attached on the exterior of a ring, while the conductor inside the ring, is fastened to insulators leading to the high-voltage standing feeder of the antenna. </p> <h2><span class="mw-headline" id="Use_of_area_under_overhead_power_lines">Use of area under overhead power lines</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=15" title="Edit section: Use of area under overhead power lines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>Use of the area below an overhead line is limited because objects must not come too close to the energized conductors. Overhead lines and structures may shed ice, creating a hazard. Radio reception can be impaired under a power line, due both to shielding of a receiver antenna by the overhead conductors, and by partial discharge at insulators and sharp points of the conductors which creates radio noise. </p><p>In the area surrounding the overhead lines it is dangerous to risk interference; e.g. flying kites or balloons, using ladders or operating machinery. </p><p>Overhead distribution and transmission lines near <a href="/wiki/Airfield" class="mw-redirect" title="Airfield">airfields</a> are often marked on maps, and the lines themselves marked with conspicuous plastic reflectors, to warn pilots of the presence of conductors. </p><p>Construction of overhead power lines, especially in wilderness areas, may have significant environmental effects. Environmental studies for such projects may consider the effect of bush clearing, changed migration routes for migratory animals, possible access by predators and humans along transmission corridors, disturbances of fish habitat at stream crossings, and other effects. </p> <h2><span class="mw-headline" id="Aviation_accidents">Aviation accidents</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=16" title="Edit section: Aviation accidents"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:High_voltage_transmission_line_aviation_obstruction_marker.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/High_voltage_transmission_line_aviation_obstruction_marker.jpg/220px-High_voltage_transmission_line_aviation_obstruction_marker.jpg" decoding="async" width="220" height="168" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/High_voltage_transmission_line_aviation_obstruction_marker.jpg/330px-High_voltage_transmission_line_aviation_obstruction_marker.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/High_voltage_transmission_line_aviation_obstruction_marker.jpg/440px-High_voltage_transmission_line_aviation_obstruction_marker.jpg 2x" data-file-width="555" data-file-height="424" /></a><figcaption>An aviation obstruction marker on a high-voltage overhead transmission line reminds pilots of the presence of an overhead line. Some markers are lit at night or have strobe lights.</figcaption></figure> <p>General aviation, hang gliding, paragliding, skydiving, balloon, and kite flying must avoid accidental contact with power lines. Nearly every kite product warns users to stay away from power lines. Deaths occur when aircraft crash into power lines. Some power lines are marked with obstruction markers, especially near air strips or over waterways that may support floatplane operations. The placement of power lines sometimes use up sites that would otherwise be used by hang gliders.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19">&#91;19&#93;</a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20">&#91;20&#93;</a></sup> </p> <h2><span class="mw-headline" id="History">History</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=17" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>The first transmission of electrical impulses over an extended distance was demonstrated on July 14, 1729 by the physicist <a href="/wiki/Stephen_Gray_(scientist)" title="Stephen Gray (scientist)">Stephen Gray</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2014)">citation needed</span></a></i>&#93;</sup> The demonstration used damp hemp cords suspended by silk threads (the low resistance of metallic conductors not being appreciated at the time). </p><p>However the first practical use of overhead lines was in the context of <a href="/wiki/Electrical_telegraph" title="Electrical telegraph">telegraphy</a>. By 1837 experimental commercial telegraph systems ran as far as 20&#160;km (13 miles). Electric power transmission was accomplished in 1882 with the first high-voltage transmission between <a href="/wiki/Miesbach%E2%80%93Munich_Power_Transmission" title="Miesbach–Munich Power Transmission">Munich and Miesbach</a> (60&#160;km). 1891 saw the construction of the first three-phase <a href="/wiki/Alternating_current" title="Alternating current">alternating current</a> overhead line on the occasion of the International Electricity Exhibition in <a href="/wiki/Frankfurt" title="Frankfurt">Frankfurt</a>, between <a href="/wiki/Lauffen" class="mw-redirect" title="Lauffen">Lauffen</a> and Frankfurt. </p><p>In 1912 the first 110 kV-overhead power line entered service followed by the first 220 kV-overhead power line in 1923. In the 1920s <a href="/wiki/RWE" title="RWE">RWE</a> AG built the first overhead line for this voltage and in 1926 built a <a href="/wiki/Rhine" title="Rhine">Rhine</a> crossing with the pylons of <a href="/wiki/Voerde" title="Voerde">Voerde</a>, two masts 138 meters high. </p><p>In 1953, the first 345 kV line was put into service by <a href="/wiki/American_Electric_Power" title="American Electric Power">American Electric Power</a> in the <a href="/wiki/United_States" title="United States">United States</a>. In Germany in 1957 the first 380 kV overhead power line was commissioned (between the transformer station and Rommerskirchen). In the same year the overhead line traversing of the Strait of Messina went into service in Italy, whose <a href="/wiki/Pylons_of_Messina" title="Pylons of Messina">pylons</a> served the Elbe crossing 1. This was used as the model for the building of the Elbe crossing 2 in the second half of the 1970s which saw the construction of the highest overhead line pylons of the world. Earlier, in 1952, the first 380 kV line was put into service in <a href="/wiki/Sweden" title="Sweden">Sweden</a>, in 1000&#160;km (625 miles) between the more populated areas in the south and the largest hydroelectric power stations in the north. Starting from 1967 in Russia, and also in the USA and Canada, overhead lines for voltage of 765 kV were built. In 1982 overhead power lines were built in Soviet Union between <a href="/wiki/Elektrostal" title="Elektrostal">Elektrostal</a> and the power station at <a href="/wiki/Ekibastuz" title="Ekibastuz">Ekibastuz</a>, this was a three-phase alternating current line at 1150 kV (<a href="/wiki/Powerline_Ekibastuz-Kokshetau" class="mw-redirect" title="Powerline Ekibastuz-Kokshetau">Powerline Ekibastuz-Kokshetau</a>). In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the <a href="/wiki/Kita-Iwaki_Powerline" class="mw-redirect" title="Kita-Iwaki Powerline">Kita-Iwaki Powerline</a>. In 2003 the building of the highest overhead line commenced in China, the <a href="/wiki/Yangtze_River_Crossing" class="mw-redirect" title="Yangtze River Crossing">Yangtze River Crossing</a>. </p> <h2><span class="mw-headline" id="Mathematical_analysis">Mathematical analysis</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=18" title="Edit section: Mathematical analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>An overhead power line is one example of a <a href="/wiki/Transmission_line" title="Transmission line">transmission line</a>. At power system frequencies, many useful simplifications can be made for lines of typical lengths. For analysis of power systems, the distributed resistance, series inductance, shunt leakage resistance and shunt capacitance can be replaced with suitable lumped values or simplified networks. </p> <h3><span class="mw-headline" id="Short_and_medium_line_model">Short and medium line model</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=19" title="Edit section: Short and medium line model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <p>A short length of a power line (less than 80&#160;km) can be approximated with a resistance in series with an inductance and ignoring the shunt admittances. This value is not the total impedance of the line, but rather the series impedance per unit length of line. For a longer length of line (80–250&#160;km), a shunt capacitance is added to the model. In this case it is common to distribute half of the total capacitance to each side of the line. As a result, the power line can be represented as a <a href="/wiki/Two-port_network" title="Two-port network">two-port network</a>, such as with ABCD parameters.<sup id="cite_ref-Glover21_21-0" class="reference"><a href="#cite_note-Glover21-21">&#91;21&#93;</a></sup> </p><p>The circuit can be characterized as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=zl=(R+j\omega L)l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>z</mi> <mi>l</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>+</mo> <mi>j</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>L</mi> <mo stretchy="false">)</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=zl=(R+j\omega L)l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d1d59589b37e976e2e697b06fe0439ca30eb7c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.752ex; height:2.843ex;" alt="Z=zl=(R+j\omega L)l"></span></dd></dl> <p>where </p> <ul><li><i>Z</i> is the total series line <a href="/wiki/Electrical_impedance" title="Electrical impedance">impedance</a></li> <li><i>z</i> is the series impedance per unit length</li> <li><i>l</i> is the line length</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/618fc4788f13fcdfe792ddf35ff04c61cfc68d8d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.026ex; height:1.676ex;" alt="\omega \ "></span> is the <a href="/wiki/Sinusoidal" class="mw-redirect" title="Sinusoidal">sinusoidal</a> <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a></li></ul> <p>The medium line has an additional shunt <a href="/wiki/Admittance" title="Admittance">admittance</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=yl=j\omega Cl}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>y</mi> <mi>l</mi> <mo>=</mo> <mi>j</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>C</mi> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=yl=j\omega Cl}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dd1e9d2411f9dd5593b442ca23cf3a6518d3210" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.683ex; height:2.509ex;" alt="Y=yl=j\omega Cl"></span></dd></dl> <p>where </p> <ul><li><i>Y</i> is the total shunt line admittance</li> <li><i>y</i> is the shunt admittance per unit length</li></ul> <ul class="gallery mw-gallery-traditional" style="max-width: 546px;"> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 130px;"><span typeof="mw:File"><a href="/wiki/File:Short_Line_Approximation.png" class="mw-file-description" title="Short length of power line"><img alt="Short length of power line" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Short_Line_Approximation.png/221px-Short_Line_Approximation.png" decoding="async" width="221" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Short_Line_Approximation.png/332px-Short_Line_Approximation.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Short_Line_Approximation.png/442px-Short_Line_Approximation.png 2x" data-file-width="636" data-file-height="288" /></a></span></div> <div class="gallerytext"> <p>Short length of power line </p> </div> </li> <li class="gallerybox" style="width: 265px"> <div class="thumb" style="width: 260px; height: 130px;"><span typeof="mw:File"><a href="/wiki/File:Med_Line_Approximation.png" class="mw-file-description" title="Medium length of power line"><img alt="Medium length of power line" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Med_Line_Approximation.png/217px-Med_Line_Approximation.png" decoding="async" width="217" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Med_Line_Approximation.png/325px-Med_Line_Approximation.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Med_Line_Approximation.png/433px-Med_Line_Approximation.png 2x" data-file-width="629" data-file-height="291" /></a></span></div> <div class="gallerytext"> <p>Medium length of power line </p> </div> </li> </ul> <h2><span class="mw-headline" id="See_also">See also</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=20" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <ul><li><a href="/wiki/Aerial_cable" title="Aerial cable">Aerial cable</a></li> <li><a href="/wiki/Conductor_marking_lights" class="mw-redirect" title="Conductor marking lights">Conductor marking lights</a></li> <li><a href="/wiki/CU_project_controversy" title="CU project controversy">CU project controversy</a></li> <li><a href="/wiki/Overhead_cable" title="Overhead cable">Overhead cable</a></li> <li><a href="/wiki/Overhead_line" title="Overhead line">Overhead line</a></li> <li><a href="/wiki/Raptor_conservation" title="Raptor conservation">Raptor conservation</a></li> <li><a href="/wiki/Third_rail" title="Third rail">Third rail</a></li> <li><a href="/wiki/Operation_Outward" title="Operation Outward">Operation Outward</a></li> <li><a href="/wiki/Powerline_river_crossings_in_the_United_Kingdom" title="Powerline river crossings in the United Kingdom">Powerline river crossings in the United Kingdom</a></li> <li><a href="/wiki/Wireless_powerline_sensor" title="Wireless powerline sensor">Wireless monitoring of overhead power lines</a></li></ul> <h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=21" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <style data-mw-deduplicate="TemplateStyles:r1011085734">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-Fink78-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fink78_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fink78_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fink78_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Fink78_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Fink78_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Fink78_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Fink78_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Fink78_1-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Donald_G._Fink" title="Donald G. Fink">Donald G. Fink</a> and H. Wayne Beaty, <i>Standard Handbook for Electrical Engineers, Eleventh Edition</i>, McGraw-Hill, New York, 1978, <style data-mw-deduplicate="TemplateStyles:r1133582631">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-020974-X" title="Special:BookSources/0-07-020974-X">0-07-020974-X</a>, Chapter 14 <i>Overhead Power Transmission</i></span> </li> <li id="cite_note-TGonen-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-TGonen_2-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGönen,_T.2014" class="citation book cs1">Gönen, T. (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6KbNBQAAQBAJ"><i>Electrical Power Transmission System Engineering: Analysis and Design</i></a> (3rd&#160;ed.). CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781482232233" title="Special:BookSources/9781482232233"><bdi>9781482232233</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Electrical+Power+Transmission+System+Engineering%3A+Analysis+and+Design&amp;rft.edition=3rd&amp;rft.pub=CRC+Press&amp;rft.date=2014&amp;rft.isbn=9781482232233&amp;rft.au=G%C3%B6nen%2C+T.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6KbNBQAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKynge2018" class="citation news cs1">Kynge, James (8 June 2018). <span class="cs1-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://www.ft.com/content/2aedab32-6aa1-11e8-8cf3-0c230fa67aec">"China's global power play"</a></span>. <i><a href="/wiki/Financial_Times" title="Financial Times">Financial Times</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 June</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Financial+Times&amp;rft.atitle=China%27s+global+power+play&amp;rft.date=2018-06-08&amp;rft.aulast=Kynge&amp;rft.aufirst=James&amp;rft_id=https%3A%2F%2Fwww.ft.com%2Fcontent%2F2aedab32-6aa1-11e8-8cf3-0c230fa67aec&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.verticalmag.com/news/article/PoweringUp">"Powering Up - Vertical Magazine - The Pulse of the Helicopter Industry"</a>. <i>verticalmag.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151004113042/http://www.verticalmag.com/news/article/PoweringUp">Archived</a> from the original on 4 October 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=verticalmag.com&amp;rft.atitle=Powering+Up+-+Vertical+Magazine+-+The+Pulse+of+the+Helicopter+Industry&amp;rft_id=http%3A%2F%2Fwww.verticalmag.com%2Fnews%2Farticle%2FPoweringUp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=GBWHUdPQCH8"><span class="plainlinks">Sunrise Powerlink Helicopter Operations</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.avaids.com/icao.pdf">"Chapter 6. Visual aids for denoting obstacles"</a> <span class="cs1-format">(PDF)</span>. <i>Annex 14 Volume I Aerodrome design and operations</i>. <a href="/wiki/International_Civil_Aviation_Organization" title="International Civil Aviation Organization">International Civil Aviation Organization</a>. 2004-11-25<span class="reference-accessdate">. Retrieved <span class="nowrap">1 June</span> 2011</span>. <q>6.2.8 ... spherical ... diameter of not less than 60 cm. ... 6.2.10 ... should be of one colour.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Annex+14+Volume+I+Aerodrome+design+and+operations&amp;rft.atitle=Chapter+6.+Visual+aids+for+denoting+obstacles&amp;rft.date=2004-11-25&amp;rft_id=http%3A%2F%2Fwww.avaids.com%2Ficao.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.ngk-locke.com/polymer.html">NGK-Locke</a> <a rel="nofollow" class="external text" href="https://archive.today/20120905000404/http://www.ngk-locke.com/polymer.html">Archived</a> 2012-09-05 at <a href="/wiki/Archive.today" title="Archive.today">archive.today</a> Polymer insulator manufacturer</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.worldenergynews.com/news/abb-energizes-transformer-record-mln-volts-651995">"ABB Energizes Transformer At Record 1.2 Mln Volts"</a>. <i>World Energy News</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=World+Energy+News&amp;rft.atitle=ABB+Energizes+Transformer+At+Record+1.2+Mln+Volts&amp;rft_id=http%3A%2F%2Fwww.worldenergynews.com%2Fnews%2Fabb-energizes-transformer-record-mln-volts-651995&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20220318041111/http://www.arp-hivoltageinsulators.com/suspension-insulators.html">"Advanced Rubber Products - Suspension Insulators"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.arp-hivoltageinsulators.com/suspension-insulators.html">the original</a> on 2022-03-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-09-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Advanced+Rubber+Products+-+Suspension+Insulators&amp;rft_id=http%3A%2F%2Fwww.arp-hivoltageinsulators.com%2Fsuspension-insulators.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.electricaleasy.com/2016/05/economic-choice-of-conductor-size-kelvins-law.html">"Economic Choice Of Conductor Size - Kelvin's Law"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Economic+Choice+Of+Conductor+Size+-+Kelvin%27s+Law&amp;rft_id=https%3A%2F%2Fwww.electricaleasy.com%2F2016%2F05%2Feconomic-choice-of-conductor-size-kelvins-law.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-vert2015-04-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-vert2015-04_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFHead2015" class="citation news cs1">Head, Elan (April 2015). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150419023320/http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html">"High-value cargo"</a>. <i>Vertical Magazine</i>. pp.&#160;80–90. Archived from <a rel="nofollow" class="external text" href="http://www.verticalmag.com/digital_issue/2015/v14i2/files/82.html">the original</a> on 19 April 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">11 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Vertical+Magazine&amp;rft.atitle=High-value+cargo&amp;rft.pages=80-90&amp;rft.date=2015-04&amp;rft.aulast=Head&amp;rft.aufirst=Elan&amp;rft_id=http%3A%2F%2Fwww.verticalmag.com%2Fdigital_issue%2F2015%2Fv14i2%2Ffiles%2F82.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-vert2015-04b-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-vert2015-04b_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFMaher2015" class="citation news cs1">Maher, Guy R. (April 2015). <a rel="nofollow" class="external text" href="http://www.verticalmag.com/digital_issue/2015/v14i2/files/94.html">"A cut above"</a>. <i>Vertical Magazine</i>. pp.&#160;92–98. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150512160639/http://www.verticalmag.com/news/article/ACutAbove">Archived</a> from the original on 12 May 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">11 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Vertical+Magazine&amp;rft.atitle=A+cut+above&amp;rft.pages=92-98&amp;rft.date=2015-04&amp;rft.aulast=Maher&amp;rft.aufirst=Guy+R.&amp;rft_id=http%3A%2F%2Fwww.verticalmag.com%2Fdigital_issue%2F2015%2Fv14i2%2Ffiles%2F94.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Harnesk, Tommy. "<a rel="nofollow" class="external text" href="http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece">Helikoptermonterad motorsåg snabbkapar träden</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150112025125/http://www.nyteknik.se/nyheter/fordon_motor/flygplan/article3874611.ece">Archived</a> 2015-01-12 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>" <i><a href="/wiki/Ny_Teknik" title="Ny Teknik">Ny Teknik</a></i>, 9 January 2015. Accessed: 12 January 2015.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFWeger2017" class="citation web cs1">Weger, Travis (2017-11-14). <a rel="nofollow" class="external text" href="http://www.tdworld.com/electric-utility-operations/wapa-helicopters-saving-time-and-money">"WAPA Helicopters: Saving Time and Money"</a>. <i>TDWorld</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-12-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=TDWorld&amp;rft.atitle=WAPA+Helicopters%3A+Saving+Time+and+Money&amp;rft.date=2017-11-14&amp;rft.aulast=Weger&amp;rft.aufirst=Travis&amp;rft_id=http%3A%2F%2Fwww.tdworld.com%2Felectric-utility-operations%2Fwapa-helicopters-saving-time-and-money&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-Grainger,_John_J_1994-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Grainger,_John_J_1994_15-0">^</a></b></span> <span class="reference-text">Grainger, John J. and W. D. Stevenson Jr. Power System Analysis and Design, 2nd edition. McGraw Hill (1994).</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFFreimark2006" class="citation news cs1">Freimark, Bruce (October 1, 2006). <a rel="nofollow" class="external text" href="http://tdworld.com/overhead-transmission/six-wire-solution">"Six Wire Solution&#93;"</a>. <i>Transmission &amp; Distribution World</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 6,</span> 2007</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transmission+%26+Distribution+World&amp;rft.atitle=Six+Wire+Solution%5D&amp;rft.date=2006-10-01&amp;rft.aulast=Freimark&amp;rft.aufirst=Bruce&amp;rft_id=http%3A%2F%2Ftdworld.com%2Foverhead-transmission%2Fsix-wire-solution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=KO7fVcqispQC&amp;pg=PA205"><i>The Art and Science of Lightning Protection</i></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Art+and+Science+of+Lightning+Protection&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKO7fVcqispQC%26pg%3DPA205&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Beaty, H. Wayne; Fink, Donald G. , <i>Standard Handbook for Electrical Engineers (15th Edition)</i> McGraw-Hill, 2007 978-0-07-144146-9 pages 14-105 through 14-106</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://retasite.wordpress.com/2014/09/10/aircraft-accidents-due-to-overhead-power-lines-updated/">Aircraft Accidents Due to Overhead Power Lines</a></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://archive.today/20141020164701/http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973">"Pacific Gas and Electric Company Reminds Customers About Flying Kites Safely"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.thefreelibrary.com/Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites...-a084267973">the original</a> on 2014-10-20<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-10-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Pacific+Gas+and+Electric+Company+Reminds+Customers+About+Flying+Kites+Safely.&amp;rft_id=http%3A%2F%2Fwww.thefreelibrary.com%2FPacific%2BGas%2Band%2BElectric%2BCompany%2BReminds%2BCustomers%2BAbout%2BFlying%2BKites...-a084267973&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AOverhead+power+line" class="Z3988"></span></span> </li> <li id="cite_note-Glover21-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Glover21_21-0">^</a></b></span> <span class="reference-text">J. Glover, M. Sarma, and T. Overbye, <i>Power System Analysis and Design, Fifth Edition</i>, Cengage Learning, Connecticut, 2012, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-111-42577-7" title="Special:BookSources/978-1-111-42577-7">978-1-111-42577-7</a>, Chapter 5 <i>Transmission Lines: Steady-State Operation</i></span> </li> </ol></div> <h2><span class="mw-headline" id="Further_reading">Further reading</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=22" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <style data-mw-deduplicate="TemplateStyles:r1054258005">.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}</style><div class="refbegin" style=""> <ul><li>William D. Stevenson, Jr. <i>Elements of Power System Analysis Third Edition</i>, McGraw-Hill, New York (1975) <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-061285-4" title="Special:BookSources/0-07-061285-4">0-07-061285-4</a></li></ul> <h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Overhead_power_line&amp;action=edit&amp;section=23" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Overhead_power_lines" class="extiw" title="commons:Overhead power lines">Overhead power lines</a> at Wikimedia Commons</li></ul> </div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Electricity_delivery" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electricity_delivery" title="Template:Electricity delivery"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electricity_delivery" title="Template talk:Electricity delivery"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electricity_delivery" title="Special:EditPage/Template:Electricity delivery"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Electricity_delivery" style="font-size:114%;margin:0 4em"><a href="/wiki/Electricity_delivery" title="Electricity delivery">Electricity delivery</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automatic_generation_control" title="Automatic generation control">Automatic generation control</a></li> <li><a href="/wiki/Backfeeding" title="Backfeeding">Backfeeding</a></li> <li><a href="/wiki/Base_load" title="Base load">Base load</a></li> <li><a href="/wiki/Demand_factor" title="Demand factor">Demand factor</a></li> <li><a href="/wiki/Droop_speed_control" title="Droop speed control">Droop speed control</a></li> <li><a href="/wiki/Merit_order" title="Merit order">Economic dispatch</a></li> <li><a href="/wiki/Electric_power" title="Electric power">Electric power</a></li> <li><a href="/wiki/Energy_demand_management" title="Energy demand management">Demand management</a></li> <li><a href="/wiki/Energy_return_on_investment" title="Energy return on investment">Energy return on investment</a></li> <li><a href="/wiki/Electrical_fault" title="Electrical fault">Electrical fault</a></li> <li><a href="/wiki/Home_energy_storage" title="Home energy storage">Home energy storage</a></li> <li><a href="/wiki/Grid_energy_storage" title="Grid energy storage">Grid storage</a></li> <li><a href="/wiki/Grid_code" title="Grid code">Grid code</a></li> <li><a href="/wiki/Grid_strength" class="mw-redirect" title="Grid strength">Grid strength</a></li> <li><a href="/wiki/Load-following_power_plant" title="Load-following power plant">Load-following</a></li> <li><a href="/wiki/Merit_order" title="Merit order">Merit order</a></li> <li><a href="/wiki/Nameplate_capacity" title="Nameplate capacity">Nameplate capacity</a></li> <li><a href="/wiki/Peak_demand" title="Peak demand">Peak demand</a></li> <li><a href="/wiki/Power_factor" title="Power factor">Power factor</a></li> <li><a href="/wiki/Electric_power_quality" title="Electric power quality">Power quality</a></li> <li><a href="/wiki/Power-flow_study" title="Power-flow study">Power-flow study</a></li> <li><a href="/wiki/Repowering" title="Repowering">Repowering</a></li> <li><a href="/wiki/Utility_frequency" title="Utility frequency">Utility frequency</a></li> <li><a href="/wiki/Variable_renewable_energy" title="Variable renewable energy">Variability</a></li> <li><a href="/wiki/Vehicle-to-grid" title="Vehicle-to-grid">Vehicle-to-grid</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Abspannportal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Abspannportal.jpg/120px-Abspannportal.jpg" decoding="async" width="120" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Abspannportal.jpg/180px-Abspannportal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Abspannportal.jpg/240px-Abspannportal.jpg 2x" data-file-width="2048" data-file-height="1536" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sources</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7em"><a href="/wiki/Non-renewable_resource" title="Non-renewable resource">Non-renewable</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fossil_fuel_power_station" title="Fossil fuel power station">Fossil fuel power station</a> <ul><li><a href="/wiki/Coal" title="Coal">Coal</a></li> <li><a href="/wiki/Natural_gas" title="Natural gas">Natural gas</a></li> <li><a href="/wiki/Petroleum" title="Petroleum">Petroleum</a></li> <li><a href="/wiki/Oil_shale" title="Oil shale">Oil shale</a></li></ul></li> <li><a href="/wiki/Nuclear_power" title="Nuclear power">Nuclear</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7em"><a href="/wiki/Renewable_energy" title="Renewable energy">Renewable</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Biogas" title="Biogas">Biogas</a></li> <li><a href="/wiki/Biofuel" title="Biofuel">Biofuel</a></li> <li><a href="/wiki/Biomass" title="Biomass">Biomass</a></li> <li><a href="/wiki/Geothermal_power" title="Geothermal power">Geothermal</a></li> <li><a href="/wiki/Hydroelectricity" title="Hydroelectricity">Hydro</a></li> <li><a href="/wiki/Marine_energy" title="Marine energy">Marine</a> <ul><li><a href="/wiki/Marine_current_power" title="Marine current power">Current</a></li> <li><a href="/wiki/Osmotic_power" title="Osmotic power">Osmotic</a></li> <li><a href="/wiki/Ocean_thermal_energy_conversion" title="Ocean thermal energy conversion">Thermal</a></li> <li><a href="/wiki/Tidal_power" title="Tidal power">Tidal</a></li> <li><a href="/wiki/Wave_power" title="Wave power">Wave</a></li></ul></li> <li><a href="/wiki/Solar_power" title="Solar power">Solar</a></li> <li><a href="/wiki/Sustainable_biofuel" title="Sustainable biofuel">Sustainable biofuel</a></li> <li><a href="/wiki/Wind_power" title="Wind power">Wind</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Power_station_technology" title="Category:Power station technology">Generation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/AC_power" title="AC power">AC power</a></li> <li><a href="/wiki/Cogeneration" title="Cogeneration">Cogeneration</a></li> <li><a href="/wiki/Combined_cycle_power_plant" title="Combined cycle power plant">Combined cycle</a></li> <li><a href="/wiki/Cooling_tower" title="Cooling tower">Cooling tower</a></li> <li><a href="/wiki/Induction_generator" title="Induction generator">Induction generator</a></li> <li><a href="/wiki/Micro_combined_heat_and_power" title="Micro combined heat and power">Micro CHP</a></li> <li><a href="/wiki/Microgeneration" title="Microgeneration">Microgeneration</a></li> <li><a href="/wiki/Rankine_cycle" title="Rankine cycle">Rankine cycle</a></li> <li><a href="/wiki/Three-phase_electric_power" title="Three-phase electric power">Three-phase electric power</a></li> <li><a href="/wiki/Virtual_power_plant" title="Virtual power plant">Virtual power plant</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Electric_power_transmission" title="Electric power transmission">Transmission</a><br />and <a href="/wiki/Electric_power_distribution" title="Electric power distribution">distribution</a></div></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Demand_response" title="Demand response">Demand response</a></li> <li><a href="/wiki/Distributed_generation" title="Distributed generation">Distributed generation</a></li> <li><a href="/wiki/Dynamic_demand_(electric_power)" title="Dynamic demand (electric power)">Dynamic demand</a></li> <li><a href="/wiki/Electric_power_distribution" title="Electric power distribution">Electric power distribution</a></li> <li><a href="/wiki/Electricity_retailing" title="Electricity retailing">Electricity retailing</a></li> <li><a href="/wiki/Electrical_busbar_system" title="Electrical busbar system">Electrical busbar system</a></li> <li><a href="/wiki/Electric_power_system" title="Electric power system">Electric power system</a></li> <li><a href="/wiki/Electric_power_transmission" title="Electric power transmission">Electric power transmission</a></li> <li><a href="/wiki/Electrical_grid" title="Electrical grid">Electrical grid</a></li> <li><a href="/wiki/Interconnector" title="Interconnector">Electrical interconnector</a></li> <li><a href="/wiki/High-voltage_direct_current" title="High-voltage direct current">High-voltage direct current</a></li> <li><a href="/wiki/High-voltage_shore_connection" title="High-voltage shore connection">High-voltage shore connection</a></li> <li><a href="/wiki/Load_management" title="Load management">Load management</a></li> <li><a href="/wiki/Mains_electricity_by_country" title="Mains electricity by country">Mains electricity by country</a></li> <li><a class="mw-selflink selflink">Power line</a></li> <li><a href="/wiki/Power_station" title="Power station">Power station</a></li> <li><a href="/wiki/Pumped-storage_hydroelectricity" title="Pumped-storage hydroelectricity">Pumped hydro</a></li> <li><a href="/wiki/Smart_grid" title="Smart grid">Smart grid</a></li> <li><a href="/wiki/Electrical_substation" title="Electrical substation">Substation</a></li> <li><a href="/wiki/Single-wire_earth_return" title="Single-wire earth return">Single-wire earth return</a></li> <li><a href="/wiki/Super_grid" title="Super grid">Super grid</a></li> <li><a href="/wiki/Transformer" title="Transformer">Transformer</a></li> <li><a href="/wiki/Transmission_system_operator" title="Transmission system operator">Transmission system operator</a> (TSO)</li> <li><a href="/wiki/Transmission_tower" title="Transmission tower">Transmission tower</a></li> <li><a href="/wiki/Utility_pole" title="Utility pole">Utility pole</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Failure modes</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Power_outage" title="Power outage">Blackout</a> (<a href="/wiki/Rolling_blackout" title="Rolling blackout">Rolling blackout</a>)</li> <li><a href="/wiki/Brownout_(electricity)" title="Brownout (electricity)">Brownout</a></li> <li><a href="/wiki/Black_start" title="Black start">Black start</a></li> <li><a href="/wiki/Cascading_failure" title="Cascading failure">Cascading failure</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Protective<br />devices</div></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arc-fault_circuit_interrupter" title="Arc-fault circuit interrupter">Arc-fault circuit interrupter</a></li> <li><a href="/wiki/Circuit_breaker" title="Circuit breaker">Circuit breaker</a></li> <li><a href="/wiki/Earth-leakage_circuit_breaker" title="Earth-leakage circuit breaker">Earth-leakage circuit breaker</a></li> <li><a href="/wiki/Generator_interlock_kit" title="Generator interlock kit">Generator interlock kit</a></li> <li><a href="/wiki/Residual-current_device" title="Residual-current device">Residual-current device</a> (GFI)</li> <li><a href="/wiki/Power_system_protection" title="Power system protection">Power system protection</a></li> <li><a href="/wiki/Protective_relay" title="Protective relay">Protective relay</a></li> <li><a href="/wiki/Numerical_relay" title="Numerical relay">Numerical relay</a></li> <li><a href="/wiki/Sulfur_hexafluoride_circuit_breaker" title="Sulfur hexafluoride circuit breaker">Sulfur hexafluoride circuit breaker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Economics<br />and policies</div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Availability_factor" title="Availability factor">Availability factor</a></li> <li><a href="/wiki/Capacity_factor" title="Capacity factor">Capacity factor</a></li> <li><a href="/wiki/Carbon_offset" class="mw-redirect" title="Carbon offset">Carbon offset</a></li> <li><a href="/wiki/Cost_of_electricity_by_source" title="Cost of electricity by source">Cost of electricity by source</a></li> <li><a href="/wiki/Environmental_tax" title="Environmental tax">Environmental tax</a></li> <li><a href="/wiki/Energy_subsidy" title="Energy subsidy">Energy subsidies</a></li> <li><a href="/wiki/Feed-in_tariff" title="Feed-in tariff">Feed-in tariff</a></li> <li><a href="/wiki/Fossil_fuel_phase-out" title="Fossil fuel phase-out">Fossil fuel phase-out</a></li> <li><a href="/wiki/Load_factor_(electrical)" title="Load factor (electrical)">Load factor</a></li> <li><a href="/wiki/Net_metering" title="Net metering">Net metering</a></li> <li><a href="/wiki/Pigovian_tax" class="mw-redirect" title="Pigovian tax">Pigovian tax</a></li> <li><a href="/wiki/Renewable_Energy_Certificate_(United_States)" title="Renewable Energy Certificate (United States)">Renewable Energy Certificates</a></li> <li><a href="/wiki/Renewable_Energy_Payments" title="Renewable Energy Payments">Renewable energy payments</a></li> <li><a href="/wiki/Renewable_energy_commercialization" title="Renewable energy commercialization">Renewable energy policy</a></li> <li><a href="/wiki/Spark_spread" title="Spark spread">Spark/Dark/Quark/Bark spread</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Statistics and<br />production</div></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_electricity_sectors" title="List of electricity sectors">List of electricity sectors</a></li> <li><a href="/wiki/Electric_energy_consumption" title="Electric energy consumption">Electric energy consumption</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Category:Electric_power_distribution" title="Category:Electric power distribution">Category</a></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node ($1) (tor_exit_node)
false
Unix timestamp of change ($1) (timestamp)
'1699641040'